Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии




Скачать 226.17 Kb.
НазваниеКонспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии
Дата публикации20.02.2014
Размер226.17 Kb.
ТипКонспект
zadocs.ru > Биология > Конспект


Конспект лекции № 8.

Тема. Теории возникновения жизни (биогенез).основные этапы развития биологии.

Биогенез – это рождение (возникновение) жизни.

Единственная известная на Земле форма жизни называется белково-полинуклеотидной, так как в её основе находятся два класса органических соединений: белки и нуклеиновые кислоты. Гипотезы биогенеза. В настоящее время существует 5 основных гипотез возникновения жизни на нашей планете: 1 – самопроизвольного (спонтанного) зарождения; 2 – стационарного состояния; 3 – панспермии; 4 – креационизма; 5 – биохимической эволюции. Каждая из них, в определенное историческое время, считалась доказанной гипотезой и получала статус "теории".

1. ^ Самопроизвольное (спонтанное) зарождение. Сущность этой теории в том, что определенные частицы вещества содержат "активное начало", которое при подходящих условиях может создать живой организм. В качестве "активного начала" предлагались разные "субстанции": солнечный свет, оплодотворенное яйцо, тина, гниющее мясо. Ван Гельмонт (1577-1644) описал эксперимент, доказывающий возможность создания живых существ. Для этого нужны: горсть пшеницы, темный шкаф и грязная рубашка, поскольку "активным началом" был человеческий пот. Через 3 недели в шкафу были обнаружены мыши.

В 1668 году Франческо Реди подверг теорию самозарождения серьёзному испытанию. Он доказал, что черви не появляются в бутылях с мясом, если их плотно закрыть и запечатать. В незапечатанных сосудах, куда свободно залезали мухи, мясо зачервивело. Реди установил, что маленькие белые червячки, появляющиеся в мясе – это личинки мух. После ряда аналогичных наблюдений он получил подтверждение гипотезы о том, что жизнь может возникнуть только из предсуществующей жизни. «Добил» теорию спонтанного биогенеза Луи Пастер. Он доказал отсутствие самозарождения бактерий. Казалось, данная теория была окончательно погребена.

2. ^ Теория стационарного состояния отрицает факт возникновения жизни. Жизнь никогда не возникала, она существует вечно, как и наша планета и вселенная. В настоящее время, сторонников этой теории мало. Главный аргумент против этой теории состоит в том, что астрономические явления в наблюдаемой вселенной показывают динамическую картину с тенденцией к расширению. Тогда, в определенный момент прошлого вселенная была сосредоточена в крайне малом объеме – точка сингулярности. В таких условиях невозможно существование не только белков полинуклеотидов, но и атомов.

3. ^ Теория панспермии - жизнь на планету Земля была занесена из космоса после попадания спор живых организмов с космической пылью или метеоритами. Ряд направлений этой гипотезы считают биосферу земли результатом экспериментов внеземного разума и доказывают это наблюдениями НЛО, археологическими находками и контактами с инопланетянами.

Данная гипотеза уходит от вопроса о происхождении жизни. Она говорит лишь о появлении живых существ на нашей планете. Тем не менее, эта гипотеза стала наиболее популярной в последние годы в связи с кризисом теории биохимической эволюции.

4. Креационизм – теория сотворения. Жизнь была создана в результате разумной целенаправленной деятельности существа или существ, которые не принадлежат к известной нам белково-полинуклеотидной форме жизни, а, возможно, и материи. Данная теория объясняет все невероятные совпадения, которые обеспечивают жизнь на Земле. Некоторые ученые не считают эту теорию научной, называя её главным недостатком недоказуемость и невозможность экспериментального подтверждения.

Однако, никаких законов формальной логики используемых в научном подходе к проблеме данная теория не нарушает. Она является предметом веры не более, чем любая другая гипотеза биогенеза.

5. ^ Теория биохимической эволюции объясняет происхождение жизни, как результат случайного взаимодействия молекул неорганических соединений в далеком прошлом (несколько миллиардов лет назад).

Процесс формирования белково-полинуклеотидной жизни можно разделить на 5 этапов: (1) возникновение подходящей планеты с первичной атмосферой из СО2, Н2О, СН4, NН3; (2) концентрирование в океанах органического бульона, состоящего из относительно простых органических молекул аминокислот, нуклеотидов, фосфолипидов и др.; (3) образование сложных биополимеров – белков, полинуклеотидов; (4) соединение компонентов жизни воедино под общей мембраной; (5) развитие самовоспроизводящегося генетического кода.

Теория биохимической эволюции не что иное, как реанимированная теория самопроизвольного зарождения жизни, отнесенная в далекое прошлое, когда условия на нашей планете отличались от современных.

Научные основы этой теории заложил Александр Опарин (1923). На основе эволюционного учения Дарвина, Опарин предположил возможность постепенного усложнения неживой материи до уровня простых одноклеточных живых организмов. Ярким доводом в пользу теории биохимической эволюции стали исследования Стенли Миллера (1953). В течение недели газовую смесь, находящуюся под высоким давлением и состоящую из водорода, метана, аммиака и водяного пара, подвергали интенсивному воздействию электрических разрядов высокого напряжения. В результате были обнаружены аминокислоты, аденин и простые сахара. После этого, теория Опарина завоевала широкое признание, как приемлемая общая схема биогенеза, а научные споры вокруг неё связаны только с деталями процесса.

^ Проблемы возникновения белково-полинуклеотидной формы жизни из неживой материи.

Вторая половина ХХ века началась с бурного прогресса в молекулярной биологии, который катализировало открытие структуры ДНК Уотсоном и Криком (1953). Одновременно открылась гигантская пропасть между живыми существами и неживой материей, о которой и не подозревал Опарин. По этой причине, к концу ХХ века теория биохимической эволюции стремительно утратила свой авторитет. Основные положения случайного возникновения жизни по теории биохимической эволюции вступили в противоречие не только с новыми данными молекулярной биологи, но и со здравым смыслом. Все 5 этапов встречают серьезные возражения.

1. Возникновение подходящей планеты с первичной атмосферой из СО2, Н2О, СН4, NН3. Случайное возникновение такой планеты весьма проблематично. Используя формулу Дрейка для подсчета числа цивилизаций в галактике, академик Шкловский И. С. (1977) заключает, что вероятность второй (подобной нашей по молекулярной основе) цивилизации практически равна 0. Главной уменьшающей вероятность составляющей этого подсчета является отсутствие достаточного количества планет для жизни, без которой нет и цивилизации.

2. Концентрирование в океанах органического бульона, состоящего из относительно простых органических молекул аминокислот и нуклеотидов, фосфолипидов, АТФ и др.

Это положение оспаривается тем, что энергия солнечных космических излучений, послужившая для синтеза органических мономеров, должна сразу же разрушать эти сложные молекулы. Их концентрация определяется динамическим равновесием и не имеет тенденции к увеличению, если их не удалять из зоны реакции.

3. Образование сложных биополимеров – белков, полинуклеотидов. Допустим, что аминокислоты каким-то образом добрались из атмосферы в океаны и скрылись от губительного излучения в толщу воды. Но, тогда они потеряют источник энергии для дальнейшей полимеризации и синтеза белков и полинуклеотидов не будет. Более того, условия водной среды способствуют не полимеризации (усложнению), а деполимеризации (растворению). Распад идет гораздо быстрее, чем синтез. Даже на этом этапе вероятность случайного возникновения биополимеров равна 0.

Вероятность того, что, бросая игральный кубик (кость), один раз выпадет шестерка, равна 1/6. Вероятность того, что, бросая два кубика один раз, выпадут две шестерки, равна 1/6.1/6=1/36. Вероятность того, что, бросая три кубика один раз, выпадут три шестерки, равна 1/6.1/6.1/6=1/216. Вероятность того, что в первичном бульоне случайно образуется простая молекула белка, равна 1/10113. Однако, любое событие, вероятность которого снижается до 1/1050, уже отклоняется математиками, как неосуществимое в реальном мире.

4. Соединение компонентов жизни под общей мембраной. Вспомнив сложное строение клеточных органоидов, трудно представить себе, что все эти сложные молекулярные комплексы случайно соберутся вместе. Для осуществления жизненных процессов требуется не 1, а около 2000 белков. Но этого мало, для химических реакций первая клетка должна доставлять энергию в точки взаимодействия молекул. Случайное возникновение этих сложных ферментативных механизмов делает вероятность биохимической эволюции исчезающе призрачной.

5. Развитие самовоспроизводящегося генетического кода. Проводя анализ возникновения генетического кода, видно, что если бы все указанные выше этапы произошли, то и это не привело бы к возникновению жизни. Её фундаментальным свойством является способность к воспроизведению. Это означает, что одновременно и случайно, должны возникнуть строго соответствующие друг другу белки и нуклеиновые кислоты (ДНК, РНК), кодирующих все белки и последовательности их сборки. Микрококк простейшая самодостаточная форма жизни состоит из 10 000 сложных молекул, но он погибнет от голода без других форм жизни, способных усваивать солнечную энергию.

Серьезным возражением в пользу возможности случайного возникновения жизни кажется утверждение о длительном времени (миллиарды лет), отведенном на этот процесс. Но известно, что даже за 30 миллиардов лет (1018 секунд), в которые с большим запасом оценивается возраст вселенной (Земле, по подсчетам сторонников случайного биогенеза 5 миллиардов лет) произойдет всего 1080 .109.1018=10107 реакций. Здесь 1080 – число электронов, позитронов и аналогичных им частиц, а 109 (миллиард) – число реакций одной частицы в секунду. Для случайного возникновения коротенькой (100 аминокислот) белковой молекулы (из 20 видов аминокислот генетического кода) вероятность много ниже 1/1050. Тогда в даже в 1 000 000 000 000 000 000 000 (миллиард триллионов) вселенных заполненных первичным бульоном вероятность образования одной такой молекулы равна 1%. Что тогда говорить о скромной планете с тонкой пленкой воды? Возникновение живого в результате описанных случайных взаимодействий молекул "столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над мусорной свалкой может привести к сборке Боинга-747" (Фред Хойл). Самое простое живое существо - микрококк имеет вероятность случайного возникновения (по очень щедрым расчетам) 10-40000.

По мере накопления конкретных знаний наряду с представлением о разнообразии организмов возникла идея о единстве всего живого. Особенно велико значение этой идеи для медицины, так как это указывает на универсальность биологических закономерностей для всего органического мира, включая человека. В известном смысле история современной биологии как науки о жизни представляет собой цепь крупных открытий и обобщений, подтверждающих справедливость этой идеи и раскрывающих ее содержание.

Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шванна и М. Шлейдена (1839). Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.

Открытием фундаментальных законов наследственности биология обязана Г. Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910-1916), Дж. Уотсону и Ф. Крику (1953). Эти законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки - от особи к особи и перераспределения ее в пределах биологического вида. Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, индивидуальное развитие - онтогенез, смена поколений.

Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток. Хотя начало таких исследований относится ко второй половине XIX в., наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК). На современном этапе развития молекулярной биологии и генетики возникло новое научно-практическое направление - геномика, имеющая в качестве главной задачи прочтение ДНК-текстов геномов человека и других организмов. На основе доступа к личной биологической информации, возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности.

Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки), закономерностей хранения, передачи и использования клетками наследственной информации. Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения.

Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии. То, что живое на планете представляет собой единое целое в историческом плане, удобно обосновывается гипотезой эволюции. Основы названной гипотезы заложены Ч. Дарвином (1858). Свое дальнейшее развитие, связанное с эволюционным толкованием достижений генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф, Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относятся к XX столетию.

Эволюционная гипотеза объясняет единство мира живых существ общностью их происхождения. Она называет пути, способы и механизмы, которые за несколько миллиардов лет привели к наблюдаемому ныне разнообразию живых форм, в одинаковой мере приспособленных к среде обитания, но различающихся по уровню морфофизиологической организации. Общий вывод, к которому приходит гипотеза эволюции, состоит в утверждении, что живые формы связаны друг с другом генетическим родством, степень которого для представителей разных групп различается. Свое конкретное выражение это родство находит в преемственности в ряду поколений фундаментальных молекулярных, клеточных и системных механизмов развития и жизнеобеспечения. Такая преемственность сочетается с изменчивостью, позволяющей на основе этих механизмов достичь более высокого уровня приспособленности биологической организации.

Первоначально люди классифицировали организмы в зависимости от их практического значения. К. Линней (1735) ввел бинарную классификацию, согласно которой для определения положения организмов в системе живой природы указывается их принадлежность к конкретному роду и виду. Бинарный принцип сохранен в современной систематике. Биологи до создания гипотезы эволюции относили живые существа к соответствующему роду и виду по их подобию друг другу, прежде всего близости строения. Эволюционная гипотеза, объясняющая сходство между организмами их генетическим родством, составила естественнонаучную основу биологической классификации. Приобретя в эволюционной гипотезе такую основу, современная классификация органического мира непротиворечиво отражает, с одной стороны, факт разнообразия живых форм, а с другой - единство всего живого.

Сторонники гипотезы эволюции в начале XXI века имеют мощный идеологический аппарат для распространения своей точки зрения. При этом они игнорируют вопиющие противоречия эволюционной гипотезы с фундаментальными законами физики и математики (теории вероятностей). Эта гипотеза является единственным обоснованием материализма в биологии.

Идея единства мира живых существ находит свое подтверждение также в экологических исследованиях, относящихся главным образом к XX в. Представления о биоценозе (В. Н. Сукачев) или экологической системе (А. Тенсли) раскрывают универсальный механизм обеспечения важнейшего свойства живого - постоянно происходящего в природе обмена веществ и энергии. Названный обмен возможен только в случае сосуществования на одной территории и постоянного взаимодействия организмов разного плана строения (продуцентов, консументов, деструкторов) и уровня организации. Учение о биосфере и ноосфере (В. И. Вернадский) раскрывает место и планетарную роль живых форм, включая человека, в природе, так же как и возможные последствия ее преобразования людьми.

Каждый крупный шаг на пути познания фундаментальных законов жизни неизменно оказывал влияние на состояние медицины, приводил к пересмотру содержания и понимания механизмов патологических процессов. Соответственно пересматривались принципы организации лечебной и профилактической медицины, методы диагностики и лечения.

Так, исходя из клеточной теории и разрабатывая ее дальше, Р. Вирхов создал концепцию клеточной патологии (1858), которая на долгое время определила главные пути развития медицины. Эта концепция, придавая особое значение в течении патологических состояний структурно-химическим изменениям на клеточном уровне, способствовала возникновению в практическом здравоохранении патологоанатомической, прозекторской службы.

Применив генетико-биохимический подход в изучении болезней человека, А. Гаррод заложил основы молекулярной патологии (1908). Этим он дал ключ к пониманию практической медициной таких явлений, как различная восприимчивость людей к болезням, индивидуальный характер реакции на лекарственные препараты.

Успехи общей и экспериментальной генетики 20-30-х годов стимулировали исследования по генетике человека. В результате возник новый раздел патологии - наследственные заболевания, появилась особая служба практического здравоохранения - медико-генетические консультации.

Геномика и современные молекулярно-генетические технологии открывают доступ к диагностике на уровне нуклеотидных последовательностей ДНК не только собственно генных болезней, но также предрасположенности к ряду тяжелых соматических патологических состояний (астма, диабет и др.). Доступный уровень генодиагностики создает предпосылки для осознанного манипулирования с наследственным материалом людей в целях генотерапии и генопрофилактики заболеваний. Достижения в названных областях науки привели к появлению целой отрасли производства, работающей на здравоохранение - медицинской биотехнологии.

Зависимость состояния здоровья людей от качества среды и образа жизни уже не вызывает сомнений ни у практикующих врачей, ни у организаторов здравоохранения. Закономерным следствием этого является наблюдаемая в настоящее время экологизация медицины.

Этапы развития молекулярной биологии до завершения программы "Геном человека" в начале XXI века

^ Год - - - Исследователи и их открытия

1869 - - - Фридрих Мишер отрыл новое вещество - ДНК (в гное из инфицированных ран!)

1941 - - - Бидл и Татум - один ген - один белок.

1944 - - - Эвери - ДНК - это генетический материал.

1953 - - - ^ Уотсон и Крик -открытие двойной спирали ДНК.

1958 - - - Меселсон и Сталь, полуконсервативная модель репликации ДНК.

1961 - - - Жакоб и Моно, - модель оперона в генетической регуляции.

1970 - - - ^ Темин и Балтимор, обратная транскриптаза в ретровирусах.

1977 - - - Расшифровка ДНК; некодирующие последовательности в генах.

1981 - - - Обнаружена каталитическая активность РНК; получены трансгенные животные

1987 - - - ^ Кери Миллис, полимеразная цепная реакция

1995 - - - Бактерия Haemophilus influenzae стала первым организмом, чья ДНК была полностью расшифрована

1997 - - - Клонирование овечки «Долли»

2000 - - - Расшифрована последовательность нуклеотидов генома человека (Дж. Крейг Вентор)

Дополнительная литература.

1. Д.Кларк, Л. Рассел Молекулярная биология: простой и занимательный подход. / Пер с англ. изд. 2-е. - М.: ЗАО "Компания КОНД" 2004. 472 с.

2. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. М.: 2003 554 с.

Вопросы для подготовки к контрольной работе №1

Вариант 1

  1. Какие виды пассивного транспорта веществ в клетку и из клетки Вы знаете?

  2. Примеры структурной, защитной и сигнальной функции углеводов.

  3. Какие этапы окисления глюкозы Вы знаете и каков их энергетический выход?

  4. Перечислите двумембранные органоиды и назовите их главные функции.

  5. Точковая мутация вставка и её последствия для кодируемого белка

  6. Основные условия для репликации ДНК?

  7. Расставить продукты по их энергетической ценности от боле сытных к менее сытным: хлеб, бутылка кукурузного масла, пачка сахара – рафинада

  8. Биологический смысл мейоза.

  9. Назвать производные мезодермы.

  10. Указать правильную последовательность из 7 периодов жизни человека.



Вариант 2.

  1. Перечислить функции белков (9).

  2. Почему при употреблении избыточного количества углеводов (мучное и сладкое) происходит ожирение?

  3. Назвать пуриновые и пиримидиновые азотистые основания РНК.

  4. Две главные опасности анаэробного окисления глюкозы и место его протекания в клетке.

  5. Описать отличия 8 видов нуклеотидов.

  6. Общий план строения всех биологических мембран.

  7. Почему клетки печени и кожи человека с одинаковыми молекулами ДНК не похожи друг на друга?

  8. Стадии митоза, при которых происходят процессы спирализация и деспирализация хромосом.

  9. Назвать производные эктодермы.

  10. Факторы, снижающие дозировку лекарств у грудных детей.



Вариант 3.

  1. Отличия ДНК от РНК по составу нуклеотидов.

  2. Функции углеводов.

  3. Пример отрицательной обратной связи при регуляции гомеостаза в организме человека.

  4. Что такое свободные радикалы и каково их влияние на биологические мембраны?

  5. Чем аденин ДНК отличается от аденина РНК?

  6. С чем был связан дерепрессор при транскрипции в опытах Жакоба-Моно и что его разрушало?

  7. Возможные последствия для здоровья замещения 1 нуклеотида в ДНК?

  8. Биологический смысл митоза.

  9. Назвать производные энтодермы.

  10. Факторы, снижающие дозировку лекарств у стариков.



Вариант 4.

  1. Примеры значения для организма человека Na, K, и Ca.

  2. Функции липидов.

  3. Назвать 5 видов азотистых оснований и 2 вида пентоз в составе нуклеотидов.

  4. Сколько всего триплетов в генетическом коде, сколько триплетов кодируют аминокислоты в биосинтезе белка, сколько стоп-кодонов и сколько инициирующих кодонов?

  5. Назвать органоиды, содержащие собственную ДНК.

  6. Возможные последствия выпадения 1 нуклеотида из ДНК для структуры кодируемого белка.

  7. Пять главных условий для транскрипции.

  8. Назвать три источника комбинативной изменчивости.

  9. Что не проникает через здоровый плацентарный барьер?

  10. Факторы, снижающие дозировку лекарств у стариков.


Вариант 5

  1. Примеры значения для организма человека Fe, F и I.

  2. Почему точечная мутация "выпадение" опаснее "инверсии"?

  3. Привести по 2 примера в каждой из трех главных групп углеводов.

  4. Как с помощью ДНК кодируются небелковые компоненты клетки (липиды, углеводы)?

  5. Что лимитирует (ограничивает) функции митохондрий (3 фактора)?

  6. Пример осмоса в организме человека

  7. Почему у людей не отрастают ампутированные конечности, несмотря на наличие строительного материала, энергии и информации?

  8. Указать правильную последовательность событий клеточного цикла при митотическом кариокинезе.

  9. Продолжительность эмбрионального, фетального и внутриутробного периода жизни.

  10. Назвать три группы гипотез старения.



Вариант 6.

  1. Примеры жирных кислот.

  2. Принцип комплементарного спаривания азотистых оснований нуклеиновых кислот.

  3. Энергетическая сущность фотосинтеза.

  4. Какие органоиды клетки не имеют мембран?

  5. Дать определение нуклеиновых кислоты.

  6. Что «переводят» при трансляции?

  7. Почему выпадение трех последовательных нуклеотидов лучше выпадения 1 нуклеотида?

  8. Указать правильную последовательность событий клеточного цикла при мейотическом кариокинезе.

  9. Указать последовательность этапов онтогенеза от оплодотворения (зиготы) до родов.

  10. Классификация видов регенерации.



Вариант 7.

  1. Назвать основные этапы биосинтеза белка (4).

  2. Принцип комплементарности при репликации ДНК.

  3. Указать главные преимущества аэробного окисления перед анаэробным.

  4. Зачем в сердечных клетках - миокардиоцитах так много митохондрий (34%)?

  5. Примеры немембранных органоидов клетки.

  6. Почему вставка трех последовательных нуклеотидов лучше вставки 1 нуклеотида?

  7. Какие гипотезы биогенеза не отвечают на вопрос о происхождении жизни во вселенной?

  8. Назвать три последовательных периода интерфазы клеточного цикла.

  9. Назвать симптомы, свидетельствующие о перенесенном тератогенном воздействии на ребенка.

  10. Что такое «Иммунная яма»?


Вариант 8.

  1. В чем сущность процессинга.

  2. В чем сущность фолдинга.

  3. Где конкретно идет анаэробное окисление глюкозы в клетке?

  4. Чем отличаются активный и пассивный транспорт по отношению к градиенту концентрации?

  5. Сущность гипотезы биогенеза «стационарное состояние».

  6. Конкретный пример индукции гена.

  7. Что такое интроны, экзоны и сплайсинг?

  8. Указать правильную последовательность 4 стадий сперматогенеза мужчин.

  9. Перечислить основные провизорные органы зародыша.

  10. Указать период жизни, возраст и пол человека, при котором наблюдаются строго периодические изменения гормонального фона.


Вариант 9.

  1. Основные свойства генетического кода?

  2. Почему точечные мутации "вставки" опаснее "замещений"?

  3. Пример инактивации экзогенных веществ на гладком эндоплазматическом ретикулуме.

  4. Зачем нужны гены - операторы?

  5. Что такое отрицательная обратная связь?

  6. Четыре вида точковых мутаций.

  7. Примеры ферментов репликации ДНК, транскрипции и фолдинга.

  8. Указать правильную последовательность 3 стадий оогенеза женщин.

  9. Назвать функции аллантоиса и амниона.

  10. Какие этапы жизни здорового половозрелого человека требуют строгие ограничения спектра принимаемых препаратов?


Вариант 10.

  1. Функции пластинчатого аппарата клетки (комплекса Гольджи).

  2. Чем хорош вырожденный триплетный генетический код?

  3. Что лимитирует (ограничивает) функции митохондрий (3 главных фактора)?

  4. Примеры регуляторной, защитной и структурной функций липидов.

  5. Почему опасно нарушать границы рН в клетках?

  6. Биологический смысл неравного деления цитоплазмы оогонии при мейотическом делении?

  7. Чем «инверсия» хуже «замещения»?

  8. Какие качественные изменения наследственного материала происходят при нормальном мейотическом делении?

  9. Назвать функции хориона и желточного мешка.

  10. В чем опасность концевой «недорепликации» ДНК по одной из гипотез старения.


Вариант 11.

  1. Понятие о гомеостазе.

  2. Назвать главные функции гладкой эндоплазматической сети

  3. Почему митохондрии относят к жизненноважным органоидам клетки, если выработка энергии дублируется на гладкой ЭПС?

  4. Точковая мутация – замещение и её последствия для кодируемых белковых молекул.

  5. Какие основные условия (5) необходимы для трансляции?

  6. Что необходимо для 2-го этапа окисления в клетке (3 фактора)?

  7. Назвать две менее тяжелые и две более тяжелые точковые мутации.

  8. Чем интроны отличаются от экзонов?

  9. Какие качественные изменения наследственного материала происходят при нормальном мейотическом делении?

  10. Назвать функции плаценты.


Вариант 12.

  1. Основные условия (5) для репликации ДНК

  2. Функции наружной цитоплазматической мембраны клетки.

  3. Указать два главных преимущества аэробного окисления глюкозы.

  4. Точковая мутация –инверсия и её последствия для кодируемых белковых молекул.

  5. Сколько молекул АТФ содержится в составе 1 молекулы глюкозы и сколько молекул АТФ можно получить при анаэробном окислении 1 молекулы глюкозы?

  6. Принцип комплементарности при репликации ДНК

  7. Что такое окислительное фосфорилирование?

  8. Основные события профазы и метафазы митоза.

  9. Назвать критические периоды внутриутробного развития.

  10. Назвать три главные причины смерти людей.


Вариант 13.

  1. Где происходит анаэробное окисление глюкозы, чем оно опасно и каков его энергетический выход?

  2. Пример дерепрессии генов.

  3. Кем выдвинута гипотеза о строении ДНК и кем доказан полуконсервативный характера её репликации?

  4. Виды активного транспорта.

  5. Роль белков репрессоров по гипотезе Жакоба-Моно.

  6. Почему точечные мутации "вставки" опаснее "замещений" одного нуклеотида?

  7. Чем отличаются друг от друга тетрады человека до и после кроссинговера?

  8. Назвать сроки имплантации и плацентации зародыша.

  9. В каких периодах жизни нельзя механически пересчитывать дозу лекарства на массу тела?

  10. Сколько примерно весит плод, плацента и матка к концу нормальной беременности


Вариант 14.

  1. Назвать 4 типа химических реакций при инактивации лекарств на гладком эндоплазматическом ретикулуме.

  2. Назовите основные элементы оперона по гипотезе Жакоба-Моно.

  3. Функции трех видов РНК.

  4. Что произойдет с эритроцитами в очищенной (дистиллированной) воде и 5% растворе NaCl? Почему?

  5. Назвать 4 вида точковых мутаций.

  6. Примеры транспортной, сигнальной и регуляторной функций белков

  7. В каком процессе принимает участия ДНК- полимераза.

  8. Основные события анафазы и телофазы митоза.

  9. Что такое редукционное (направляющее) тельце первого порядка?

  10. Почему должна быть прибавка массы (8-10 кг) у женщины к концу 9 месяца беременности?


Вариант 15.

  1. Какие виды РНК нужно иметь для трансляции?

  2. Функции гранулярной и гладкой эндоплазматической сети.

  3. Какие основные условия (5) необходимы для трансляции?

  4. Что необходимо для 2-го этапа окисления в клетке (3 фактора)

  5. С чем аденин и гуанин комплементарно спариваются при транскрипции и при репликации ДНК?

  6. Что такое индуктор?

  7. Почему при недостатке кислорода изменяется рН клетки?

  8. Сколько идентичных хромосом у 1- бабуши и внучки; 2- отца и сына; 3- монозиготных братьев близнецов?

  9. Сколько весят плацента, матка и околоплодные воды в конце нормальной беременности.

  10. Назовите примеры стабильных, лабильных и статических (по регенераторной способности) клеток человека.


Вариант 16.

  1. Примеры сигнальной, репродуктивной и защитной функций белков.

  2. Точковая мутация вставка и её последствия для кодируемых белковых молекул

  3. Назвать этапы окисления глюкозы и их энергетическое значение

  4. Описать строение нуклеотидов ДНК.

  5. Условия (3) для полного окисления глюкозы в клетке

  6. Пример отрицательной обратной связи при регуляции гомеостаза в организме человека

  7. Почему при ацидозах и алкалозах в клетках нарушаются обменные процессы?

  8. Чем профаза митоза отличается от профазы–I мейоза?

  9. Чем бластула отличается от гаструлы?

  10. Приведите примеры старческих изменений в организме человека.



Добавить документ в свой блог или на сайт

Похожие:

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconЛекция 1 1 Тема: Основные этапы развития информационного общества....
Тема: Основные этапы развития информационного общества. Этапы развития технических средств

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconЛитература. Асмус В. Ф. Античная философия. М., 1976
Основные предпосылки возникновения античной философии и основные этапы ёё развития

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconЛекция Тема Предмет и задачи биотехнологии, основные этапы развития науки
Биотехнология как наука, предмет, объекты и основные цели. Этапы развития биотехнологии. Связь биотехнологии с биологическими, химическими,...

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconКонспект лекций по дисциплине методы исследования в менеджменте тема 6
Развитие геометрического подхода в теории управления организациями определено влиянием об­щей теории систем, создание которой вызвано...

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconВопросы к экзамену по курсу «Физиология цнс» для студентов 4 курса...
...

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconЛекция №1 Тема: Основные этапы развития информационного общества
И на свет стали появляться различные средства и методы обработки информации, в результате чего определились некие этапы кардинальных...

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconВопросы к зачету по предмету «Политическая экономия» Факультет Политологии декабрь 2013 г
Политэкономия и Экономикс: сравнительный анализ двух ветвей экономической теории. Основные этапы и направления развития экономической...

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconV. Методические рекомендации. 47
Введение в экономическую теорию. Блага. Потребности, ресурсы. Экономический выбор. Экономические отношения. Экономические системы....

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии icon2. Методология теории государства и права Теория государства и права...
Понятие и характеристика теории государства и права. Закономерности возникновения, развития и функционирования государственно-правовых...

Конспект лекции № Тема. Теории возникновения жизни (биогенез). основные этапы развития биологии iconЛекция №1
Введение в молекулярную биологию. Развитие научного направления. Взаимосвязь наук, создавших молекулярную биологию. Основные этапы...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов