А. А. Шарц Учебное пособие




НазваниеА. А. Шарц Учебное пособие
страница2/8
Дата публикации30.01.2014
Размер1.31 Mb.
ТипУчебное пособие
zadocs.ru > Математика > Учебное пособие
1   2   3   4   5   6   7   8

Термодинамическая система и особенности двух путей исследования ее поведения. Микрохарактеристики частиц и макроскопические термодинамические параметры


Принятое в классической механике описание состояния механической системы, состоящей из макроскопических тел, посредством указания координат и импульсов этих тел далеко не всегда оказывается достаточным для правильного предсказания последствий, вызываемых взаимодействием этих тел. Это означает, что разнообразие взаимодействий в природе даже при макроскопическом рассмотрении не может быть сведено к механике. Повседневная практика дает нам множество примеров недостаточности чисто механического описания поведения макроскопических тел. Так, одно и то же тело, неподвижное в некоторой системе отсчета, может восприниматься нами на ощупь как холодное, теплое или горячее. Хотя ясно, что наши органы чувств несовершенны в качестве измерительных приборов, однако даже они позволяют сформировать основные понятия для изучения тех свойств макроскопических тел, которые получили название тепловых. Свое объяснение эти понятия получают на основе фундаментального, базового понятия, каким является понятие термодинамической системы.

Термодинамической мы называем систему, включающую в себя огромное количество элементов (микрочастиц), что и отличает ее качественно от системы механической, где число частиц невелико, обычно две или три и редко больше (почти всегда это число порядка единицы). Чтобы составить представление о порядке числа частиц в термодинамической системе, надо ориентироваться на число Авогадро.

Теперь надо вспомнить, что с точки зрения обычного, механического подхода для полного описания состояния системы из N частиц надо указать координаты и импульсы этих частиц (у нас это микропараметры системы). Для этого придется решать 3N уравнений движения (в проекциях на координатные оси), что, очевидно, невыполнимо в силу колоссального числа частиц. Где же выход? Оказывается, при выполнении некоторых условий (требование равновесного состояния системы будет обсуждено позднее) нет необходимости прослеживать поведение отдельных элементов термодинамической системы, поскольку большинство макроскопически наблюдаемых в таких системах явлений (а именно они в первую очередь представляют технический интерес) определяется поведением всей совокупности элементов системы как единого целого. Лишь некоторые явления природы связаны с наличием особых характеристик у некоторой, обычно очень небольшой части элементов системы, что требует иного, не термодинамического подхода, чтобы выявить долю элементов коллектива, обладающую такими характеристиками. Эта задача, как уже указывалось ранее, решается статистическими методами. Большинство же макроскопических явлений определяется усредненными по всему коллективу характеристиками микрообъектов (частиц термодинамической системы), такими как средняя энергия, средний (по модулю) импульс и т.п. Усреднение предполагается по частицам, хотя и занимающим макроскопически малый объем, но число которых все еще очень велико. Для понимания сути большинства макроскопически наблюдаемых явлений природы требуется совсем немного таких усредненных микрохарактеристик частиц системы. На макроскопическом уровне это дает возможность использовать для описания состояния термодинамической системы небольшое число так называемых термодинамических параметров, а именно давление, температуру, концентрацию, поляризованность, намагниченность, к которым добавляется геометрический (механический) параметр – объем. Таким образом, макроскопические термодинамические параметры вводятся в обычной термодинамике как описательные величины, и только в статистической термодинамике они раскрываются с точки зрения их микроскопической природы. Так давление газа оказывается результатом усреднения импульсов, передаваемых при ударах молекул о стенку, а температура оказывается пропорциональной средней кинетической энергии, приходящейся на одну молекулу.

С точки зрения феноменологического, макроскопически-описательного подхода знания вышеуказанных параметров (и энергии) вполне достаточно для описания состояния термодинамической системы, если система находится в состоянии термодинамического равновесия, хотя с точки зрения классической механики это описание состояния системы частиц является неполным. Термодинамические параметры могут использоваться и при описании установления процессов равновесия, поскольку равновесие в подсистемах (частях системы, содержащих все еще очень большое число частиц) устанавливается быстрее, чем во всей системе, и все соображения, относящиеся к равновесному состоянию, остаются в силе и для подсистем, на которые всегда можно мысленно разделить систему.


    1. ^ Принцип термодинамического равновесия.

Уравнение состояния
Повседневный опыт показывает, что в любой предоставленной себе самой, то есть полностью изолированной от внешних воздействий, термодинамической системе со временем происходит выравнивание по объему всех термодинамических параметров. Это – принцип полного термодинамического равновесия (его иногда называют нулевым началом термодинамики). То состояние, к которому самопроизвольно и необратимо (то есть так, что, придя в это состояние, система сама собой не может из него выйти) стремится любая изолированная система, получило название состояния теплового или термодинамического равновесия. Состояние теплового равновесия возможно и в открытых системах при неизменности внешнего воздействия на систему, но об этом подробнее будет сказано в разделе 9.

В состоянии теплового равновесия прекращаются все макроскопические изменения в термодинамической системе, и в таком состоянии система способна оставаться сколь угодно долгое время. Для нарушения теплового равновесия необходимо изменение внешнего воздействия на систему. Самопроизвольные, чаще всего небольшие, отклонения от равновесного состояния термодинамической системы, конечно, случаются (в силу хаотического, взаимно несогласованного характера протекания микропроцессов). Они носят название флуктуаций. Это особый вопрос, рассматриваемый в статистической механике, а в рамках феноменологической равновесной термодинамики флуктуациями просто пренебрегают.

Процесс самопроизвольного перехода системы из неравновесного состояния в состояние равновесное называется процессом релаксации. У разных термодинамических параметров характерное время выравнивания разное. Промежуток времени, характеризующий процесс выравнивания по объему какого-либо из макроскопических параметров, носит название времени релаксации для данного параметра. Время релаксации зависит от микромеханизма процесса релаксации. Для установления состояния полного термодинамического равновесия требуется время, определяемое наибольшим из времен релаксации. За это время устанавливается равновесие по всем параметрам. Следует подчеркнуть, что тепловое равновесие носит динамический характер, то есть сохраняется присутствие микропроцессов, не нарушающих однако состояния теплового равновесия..

В классической термодинамике механизм установления теплового равновесия не играет абсолютно никакой роли, поскольку эта термодинамика имеет дело только с такими термодинамическими системами, где уже установилось тепловое равновесие (или почти установилось, то есть система пренебрежимо мало отклонилась от равновесного состояния). После установления равновесия, на термодинамических параметрах уже никак не отражается наличие или отсутствие между отдельными элементами термодинамического коллектива микровзаимодействий, ответственных за установление в системе теплового равновесия. Именно поэтому можно рассматривать самые простые модели поведения частиц (элементов) системы, где никакой роли не будут играть, например, размеры частиц или законы их взаимодействия, а результаты все равно получаются правильно отражающими наблюдаемые явления (разумеется, в границах применимости используемых моделей). Это замечательное свойство – независимость выводов термодинамики от законов микровзаимодействий, их всеобщность – есть следствие равновесного состояния рассматриваемых термодинамических систем. За это термодинамику иногда называют термостатикой.

Все явления, сопровождающиеся процессами приближения к тепловому равновесию, необратимы. Необратимость процесса в строгом смысле этого слова означает, что процесс нельзя пройти в обратном направлении через те же самые состояния. Так, например, при сжатии газа в колбе под поршнем концентрация молекул газа вблизи поршня больше, чем во всем остальном объеме, а при обратном движении поршня – наоборот, концентрация молекул вблизи поршня меньше. Это означает, что промежуточные состояния термодинамической системы в процессе сжатия и в процессе разрежения газа не идентичны друг другу, и, следовательно, процесс нельзя пройти в обратном направлении в точности через те же самые промежуточные состояния. О термодинамическом понимании необратимости и обратимости мы еще будем говорить, когда вернемся к этому вопросу в третьем разделе.

В механике мы привыкли к тому, что задание начальных значений координат и импульсов частиц однозначно определяет (через решение уравнений движения) их координаты и импульсы (то есть состояние механической системы) в любые другие моменты времени. Это означает, что разные начальные условия ведут к разным конечным состояниям, и, зная уравнение движения, в принципе всегда можно восстановить историю состояний механической системы.

Иное дело термодинамические системы. Каковы бы ни были первоначальные распределения частиц системы по координатам и импульсам, после установления теплового равновесия ничего нельзя сказать об этих начальных условиях. Термодинамическая система «не помнит» историю своих состояний, предшествовавших равновесному состоянию. Ничего нельзя сказать о том, каким путем, через какие промежуточные состояния система шла к равновесию. В равновесной термодинамической системе не сохраняется информация о прошлых ее состояниях. Динамическое описание состояния, используемое в механике, предполагает возможность в любой момент точно указать координаты и импульсы всех частиц системы. В термодинамических системах, состоящих из колоссального числа частиц, движущихся почти независимо друг от друга, возможность такого динамического описания оказывается утраченной. Однако в условиях термодинамического равновесия имеется возможность указать усредненные по времени (или, что то же самое, по коллективу частиц) координаты и импульсы частицы. По сравнению с механикой оказалась утраченной возможность точного знания фазовой траектории отдельной частицы в координатно-импульсном пространстве. Произошла некоторая утрата определенности описания состояния каждой частицы. Мерой утраты этой определенности должна служить новая функция состояния системы, связанная с усредненной величиной разброса («размытостью») значений координат и импульсов частиц около их средних значений. Эта новая функция должна отражать новую (по сравнению с механикой) характеристику системы частиц, которую можно назвать хаотичностью состояния системы. Изменение этой функции при переходе системы из одного состояния в другое означает изменение степени хаотичности состояния системы. Несколько забегая вперед, укажем, что такой функцией является энтропия.

^ В равновесной термодинамике нет уравнения, аналогичного уравнению движения в механике. Но здесь есть уравнение (равновесного) состояния. Как уже отмечалось, в термодинамике для описания состояния термодинамической системы считается достаточным охарактеризовать ее термодинамическими параметрами, такими как давление, температура и объем, и в ряде случаев еще некоторыми. Обычно этих трех параметров бывает достаточно, если не требуется знания концентраций различных компонентов в смесях (при химических реакциях) и не рассматриваются электрические и магнитные влияния.

Весь накопленный человечеством за его историю опыт, касающийся поведения термодинамических систем, убеждает нас в том, что в состоянии теплового равновесия между термодинамическими параметрами должна существовать связь, позволяющая найти любой из параметров, если известны все остальные. Существование этой связи должно проявляться в виде наличия определенной функциональной зависимости между этими параметрами, называемой уравнением состояния и записываемой в самом общем виде как

f(P,T,V,…) = 0. (1.1)

Существование такого (термического) уравнения состояни означает,что число независимых параметров на единицу меньше, чем их входит в это урапвнение.

Почему мы уверены в существовании такой связи, называемой иногда термическим уравнением состояния?

Дело в том, что из самого факта существования этого уравнения можно извлечь некоторые следствия, которые можно проверить опытным путем. Так, рассматривая в качестве независимых термодинамических параметров тела его давление Р и температуру Т и считая объем функцией этих параметров, мы можем написать для д
ифференциала объема следующее выражение
к
оторое при неизменном объеме, то есть когда dV = 0, дает связь

Вспомнив используемые в технике три коэффициента, а именно:

  • и
    зобарный (Р = Const.) коэффициент теплового расширения

- коэффициент изотермической сжимаемости (который обратно пропорционален изотермическому модулю всестороннего сжатия ВТ), где отрицательный знак при нормальной сжимаемости (уменьшение объема при повышении давления) дает положительное значение коэффициента,


и ещё

  • изохорный (V = Const.) термический (температурный) коэффициент давления

т
о мы получаем (просто из факта существования уравнения состояния, если это предположение справедливо) следующую связь между этими тремя коэффициентами

п
озволяющую на практике по любым двум коэффициентам вычислить третий, и проверить правильность этого соотношения экспериментально.

^ Существование уравнения состояния позволяет в принципе вычислить в равновесном состоянии любой из термодинамических параметров (если известны остальные), и, следовательно, вычислить любые функции состояния термодинамической системы, поскольку (согласно общему принципу макроскопически-описательного изучения термодинамических систем) знания термодинамических параметров (и энергии) вполне достаточно для описания состояния системы, а значит и для вычисления любой из интересующих нас функций состояния этой системы.


    1. ^ Некоторые сведения о тепловых характеристиках тел. Теплота и температура. Температурное поведение тел. Газовые законы. Абсолютная температура


Для дальнейшего продвижения в понимании тепловых свойств термодинамических систем нам необходимо ввести два типа характеристик макроскопических тел, а именно экстенсивные и интенсивные величины.

Экстенсивными называются величины пропорциональные количеству вещества в системе, то есть обычно пропорциональные размерам системы. Эти величины обладают (с некоторыми оговорками) свойством аддитивности, то есть величина, относящаяся ко всей системе, может считаться (с хорошим приближением) равной сумме величин, относящимся к частям системы. Например, это касается массы или энергии.

Напротив, такие характеристики термодинамических систем как давление, температура или концентрация частиц, не суммирующиеся при объединении подсистем в одну систему, носят название интенсивных величин. Именно интенсивные величины выравниваются (в отсутствии внешних воздействий) по всему объему термодинамической системы при достижении термодинамического равновесия.

Необходимость введения экстенсивной характеристики для тепловых процессов понятна из знакомой каждому бытовой ситуации, когда можно пить чай мелкими глотками и не испытывать при этом неприятных ощущений, но стоит только сделать большой глоток и будет ожог. Мы объясняем ожог быстрым поступлением большого количества тепла, то есть аддитивными свойствами теплоты. Другой вариант бытового опыта: если из печной духовки (из теплового равновесия) взять стакан молока и стакан чая и отхлебнуть одинаковые количества одного и другого, то можно «обжечься на молоке», а от чая (при прочих равных условиях) неприятных последствий может и не быть. Мы опять говорим о разных количествах поступившего тепла, отмечая одновременно различное “теплосодержание” при передаче тепла одинаковыми количествами различных веществ. Из этих знакомых всем по личному опыту фактов очевидна необходимость введения понятий количества тепла (корректнее говорить теплоты, подразумевая количество энергии, переданной не механическим, силовым, а тепловым способом, то есть энергии, передаваемой через несогласованное, неупорядоченное движение микрочастиц), а также понятия теплоемкости, о которой речь пойдет ниже.

Что же такое теплота и как ее измерять?

С точки зрения молекулярно-кинетической теории теплота связана с энергией хаотического движения микрочастиц, которая передается от одних тел к другим при тепловых процессах. Что речь здесь идет именно об энергии, следует из того, что разные виды энергии (механическая, электрическая, магнитная) могут преобразовываться в теплоту, что подтверждается многими опытами, например, нагреванием тел при трении или охлаждением газов при совершении ими работы. Поэтому естественно в качестве единицы измерения теплоты взять единицу энергии (в СИ – джоуль). Раньше, когда связь теплоты и работы не была еще выяснена, единицей измерения теплоты являлась калория.

Еще раз подчеркнем, что когда речь идет о теплоте (тепле, количестве тепла), то имеется в виду количество энергии, передаваемой немеханическим способом. И хотя можно говорить о количестве энергии, которую имеет данная термодинамическая система, но нельзя говорить о количестве теплоты, заключенном в данном теле, как нельзя говорить о количестве работы в данном теле (работа является мерой энергии, переданной механическим, то есть силовым способом). Таким образом, в отличие от энергии, которая является функцией состояния системы, теплота (как и работа) в общем случае является функцией процесса передачи энергии. Переход системы из одного состояния в другое может осуществляться разными путями с передачей разного количества теплоты (и совершения при этом разной работы), хотя изменение энергии системы при этом будет то же самое.

Необходимость введения еще одной, но интенсивной характеристики для систем, участвующих в тепловых процессах, вытекает из представления о разной степени «нагретости» одного и того же тела. Так одинаковые количества воды, взятые из колодца и из кипящей кастрюли, производят различное тепловое действие (тот же эффект ожога). Мы говорим в таких случаях, что вода в кастрюле и в колодце имеет разную степень «нагретости». Мера «нагретости» тела получила название температуры.

С точки зрения молекулярно-кинетической теории различие в температуре означает различную интенсивность хаотического движения микрочастиц термодинамической системы. Средняя кинетическая энергия одной микрочастицы растет пропорционально квадрату среднего импульса. Давление есть результат передачи импульсов при ударах молекул в пересчете на единицу площади. С возрастанием скоростей молекул давление должно возрастать пропорционально квадрату усредненной скорости, так как с увеличением скорости в равной мере возрастает как импульс, так и число ударов молекул о стенки в единицу времени, а произведение импульса на скорость прямо пропорционально кинетической энергии. Энергия газа пропорциональна давлению, о чем можно догадаться уже из определения работы dA = РdV (плотность энергии и давление имеют одинаковую размерность), а давление пропорционально квадрату среднего импульса, то есть средней кинетической энергии одной частицы. Из молекулярно-кинетического смысла температуры видно, что эта характеристика связана с дискретностью вещества на микроскопическом уровне, с существованием средней кинетической энергии, приходящейся на одну частицу.

На макроскопическом уровне изменение температуры проявляется наиболее ярко в изменении размеров тел по мере их нагревания или охлаждения (при сохранении неизменными других термодинамических параметров). Именно это свойство, изменение размеров с изменением температуры, чаще всего используется для создания приборов, измеряющих температуру – термометров. Поскольку при измерении температуры речь идет об измерении энергии, приходящейся в среднем на одну микрочастицу, то измерять ее в привычных для нас макроскопических единицах, джоулях, довольно неудобно, так как слишком велика единица измерения. Поэтому используется другая единица измерения энергии – градус Кельвина, совпадающий по величине с градусом Цельсия (но превосходящий в 1,8 раза градус Фаренгейта). Коэффициент перевода градусов Кельвина в джоули называется постоянной Больцмана и равен 1,38.10-23 Дж/К.

В широко распространенной ныне у нас стоградусной шкале температур (введенной в 1742 году шведским астрономом Цельсием) точка замерзания воды при нормальном давлении принимается за 0 градусов, а точка кипения воды – за 100оС. Перейти от шкалы Цельсия к шкале Кельвина можно, заметив, что при охлаждении некоторого количества достаточно разреженного газа (например, при нормальном давлении) его объем уменьшается согласно установленному в начале Х1Х века закону Гей-Люссака по формуле V = Vo(1 + t.t). Здесь t – температура по шкале Цельсия, а t термический коэффициент объемного расширения, одинаковый для всех достаточно разреженных газов и найденный равным (при нормальных условиях) 1/273 обратных градусов. Если считать, что этот закон будет выполняться при неограниченном понижении температуры, то объем газа должен стать равным нулю при температуре минус 273оС. Эта точка будет минимальной температурой, абсолютным нулем. Английский физик Кельвин предложил шкалу температур, ведущую отсчет от абсолютного нуля. В этой шкале одна опорная точка (а не две, как в шкале Цельсия) – тройная точка для воды – температура, при которой вода, лед и водяные пары находятся в состоянии равновесия. Эта температура принята равной 273,16оК (чтобы сохранить равной нулю по Цельсию точку замерзания воды при нормальном давлении и размер одного градуса).

Введение абсолютной шкалы температур на основании закона Гей-Люссака может показаться недостаточно обоснованным, так как ограниченность действия этого закона очевидна. Однако лежащая в основе этого закона модель идеального газа (молекулы которого имеют пренебрежимо малые размеры и взаимодействуют только при соприкосновениях, но не на расстояниях) является настолько хорошим инструментом исследования тепловых явлений, что практически правильно указывает не только на само существование абсолютного нуля, но и на его расположение на шкале Цельсия. Дальнейшее развитие науки, приведя более солидное обоснование в пользу существования абсолютного нуля и более точно указав его расположение на шкале температур (уточнение составляет 0,16 градуса), тем не менее, не внесло в этот вопрос существенных поправок. Впредь мы будем пользоваться температурной шкалой Кельвина, где температура по Кельвину ТоК = 273 + toC.

Наиболее точно температура измеряется газовым (водородным) термометром по увеличению давления достаточно разреженного газа при неизменном объеме согласно закону Шарля Р = Ро(1 + t.t), где в скобках стоит та же функция, что и в законе Гей-Люссака.

Теперь, используя шкалу Кельвина, можно в компактной форме записать все три известных из школьного курса газовых закона (Бойля-Мариотта, Шарля и Гей-Люссака) в один объединенный газовый закон, выражающийся формулой Клапейрона-Менделеева (и являющийся уравнением состояния идеального газа),
РV = мRT/M =RT, (1.2)
где м – масса газа; М – масса моля (число граммов, равное массе молекулы, выраженной в атомных единицах массы); R –универсальная газовая постоянная (произведение числа Авогадро на постоянную Больцмана), равная 8,31 Дж/мольК; Р– давление; V – объем; Т – температура; число молей.

Эта формула тем точнее отражает поведение реальных газов, чем более они разрежены. Для одного моля вещества это уравнение принимает особенно простой вид:
PV = RT (1.2')
Следует отметить, что понять связь между теплотой и температурой было весьма непросто, так как понятие теплоты относится не к состоянию термодинамической системы, а к способу передачи энергии. Понятие количество тепла, содержащееся в системе, просто не имеет смысла, как не имеет смысла и понятие тепловой энергии. Только второе начало термодинамики связало температуру системы с поступающей в систему теплотой через дифференциальное изменение новой функции состояния, обнаруженной Рудольфом Клаузиусом (1854), именовавшейся первоначально приведенной теплотой, но названной им позднее (1865) энтропией. Подобно тому, как давление и объем (аналог силы и перемещения в механике одномерного движения) являются координатами при передаче энергии механическим (силовым) способом, то есть координатами для работы, так температура и энтропия являются координатами при передаче энергии тепловым способом, то есть координатами для теплоты. Здесь еще можно сразу отметить, что элементарное количество переданной энергии равно произведению интенсивного параметра на приращение экстенсивного.

^ 2. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ
2.1. Энергия, работа и теплота. Сохранение энергии
1   2   3   4   5   6   7   8

Похожие:

А. А. Шарц Учебное пособие iconКейн экология упражнения, задачи и задания в тестовой форме учебное пособие
Учебное пособие предназначено для проведения практических работ по курсу Экология на технических специальностях. Учебное пособие...

А. А. Шарц Учебное пособие iconИсследование электрических цепей учебное пособие Часть III челябинск
Учебное пособие предназначено для выполнения лабораторных работ по дисциплине «Теоретические основы электротехники» студентами энергетических...

А. А. Шарц Учебное пособие iconУчебное пособие
Медицинская подготовка командного состава судов: Учебное пособие. М.: Мортехинформреклама, 1993. 152с

А. А. Шарц Учебное пособие iconЭкономика учебное пособие
Учебное пособие предназначено для студентов, обучающихся на лечебном факультете

А. А. Шарц Учебное пособие iconЦенообразование (учебное пособие)
Учебное пособие предназначено для студентов экономической специальности 080502, аспирантов, преподавателей и слушателей профессиональной...

А. А. Шарц Учебное пособие iconI : Учебное пособие/ Под ред. И. А. Жеребкиной
...

А. А. Шарц Учебное пособие iconУчебное пособие Омск 2012 удк 616. 8(075) ббк 56. 12я73
Учебное пособие предназначено для студентов старших курсов медицинских вузов

А. А. Шарц Учебное пособие iconУчебное пособие
Учебное пособие предназначено для студентов и аспирантов, изучающих социологию культуры. Содержание курса соответствует Государственному...

А. А. Шарц Учебное пособие iconУчебное пособие. Изд. 2-е Ростов н/Д: "Феникс", 2003. 448 с. (Серия "Высшее образование".)
Учебное пособие написано в соответствии с новыми требованиями, содержащимися в государственных образовательных стандартах

А. А. Шарц Учебное пособие iconУчебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета
Зоопсихология и сравнительная психология: Учебное пособие. Ставрополь: скси, 2005. 272 с

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов