А. А. Шарц Учебное пособие




НазваниеА. А. Шарц Учебное пособие
страница7/8
Дата публикации30.01.2014
Размер1.31 Mb.
ТипУчебное пособие
zadocs.ru > Математика > Учебное пособие
1   2   3   4   5   6   7   8

Формула Клапейрона-Клаузиуса

Поскольку уравнение Ван-дер-Ваальса учитывает собственный объем молекул и их взаимное притяжение на расстоянии (что проявляется в существовании фазовых переходов), то оно может быть использовано для выяснения связи температуры фазового перехода первого рода (испарение-конденсация либо плавление-отвердевание) с изменением объема при фазовом переходе и с количеством теплоты, необходимым для изменения агрегатного состояния (например, для превращения воды в пар или льда в воду).

Сначала обратим внимание на возможность изобразить работу тепловой машины через площадь фигуры цикла не только в координатах давление-объем, но и в координатах температура-энтропия. Так, например, цикл Карно в этих координатах представляется прямоугольником, поскольку обратимые адиабатные процессы являются изоэнтропными и при δQ = 0 из уравнения (5.1) следует dS = 0, и значит S = const, а изотермы изображаются прямыми линиями, перпендикулярными оси температур. На Рис.5 представлен цикл Карно в этих координатах.


3

2
T



1

Т1




T2

Т2 4 3





S1 S2 S

Рис.5. Цикл Карно в координатах энтропия-температура (S,T).
Диаграмма цикла Карно в этих координатах хорошо иллюстрирует КПД цикла. Легко понять, что количество теплоты, полученное от нагревателя при температуре T1, выражается площадью прямоугольника между точками 1 и 2 и осью абсцисс, то есть Q1 = T1(S2 – S1). Количество теплоты, отданное холодильнику при температуре Т2, соответственно будет равно Q2 = T2(S2 – S1). КПД цикла Карно равен отношению площадей прямоугольников (Q1 - Q2)/Q1 = (T1 - Т2)/T1. Площадь, ограниченная на рисунках линиями цикла 1-2-3-4, отображает то количество теплоты, которое преобразуется тепловой машиной за цикл в механическую работу, независимо от того, идет ли речь об изображении цикла в координатах давление-объем (P,V) на Рис.3 или в координатах температура-энтропия (T,S) на Рис.5. Значит, эти площади можно приравнять. Если речь идет об элементарном цикле, то фигура из двух близких адиабат и двух близких изотерм дает в координатах (P,V) параллелограмм, а в координатах (T,S) – прямоугольник, площади которых равны

dPdV = dTdS = dTdQ/T= dQ·dT/T.


В этом выражении отношение dT/T есть КПД элементарного цикла Карно, а δQ – количество полученной от нагревателя теплоты. Если применить полученную формулу к циклу, построенному на фазовом переходе, происходящем при постоянном давлении и постоянной температуре, и потом вычислить площадь цикла, проинтегрировав в первом случае по объему, а во втором по энтропии, то есть по количеству теплоты, поступающей в систему при фазовом переходе, то получим формулу

которая дает (после интегрирования) уравнение, связывающее изменение температуры фазового перехода при изменении давления в термодинамической системе с теплотой фазового перехода и изменением объема при изменении агрегатного состояния вещества, а именно уравнение Клапейрона-Клаузиуса

(8.6)

Применение этой формулы в практически интересных случаях (например, для вычисления изменения температуры кипения воды в скороварке или температуры плавления льда под лезвием конька) рассматривается в задачах к курсу термодинамики.
8.3. Фазовые диаграммы состояния. Тройная точка

Уравнение Клапейрона-Клаузиуса (8.6) применимо к любому фазовому переходу, а не только к переходу жидкость-пар, но и к плавлению (твердое тело - жидкость) и к возгонке (твердое тело - пар). В правой части этого уравнения стоят измеримые на опыте величины, поэтому, опираясь на экспериментальные данные, можно построить на графике в координатах температура-давление (T, P) кривые равновесия вещества в разных агрегатных состояниях. Для любой пары агрегатных состояний можно построить кривые, показывающие зависимость температуры фазового перехода от давления. Если взять три агрегатных состояния, то получаются два уравнения, связывающие две независимые переменные. Решение в этом случае может существовать лишь в одной точке, то есть при вполне определенных значениях температуры и давления (T, P). Эта точка получила название тройная точки на фазовой диаграмме состояний вещества.

В качестве примера тройной точки обычно приводятся координаты тройной точки воды при давлении Р = 4,58 мм рт ст и абсолютной температуре Т = 273,16 оК, которая, напомним, является опорной температурой при построении термодинамической шкалы температур. В этой тройной точке сосуществуют одновременно твердая фаза (лед), жидкая фаза (вода) и газообразная фаза (пар).

Справедливости ради следует отметить, что даже однокомпонентная система (не говоря уже о многокомпонентных) может иметь более одной тройной точки вследствие возможности существования различных модификаций состояния вещества. Это действительно имеет место при перестройке кристаллической структуры твердых веществ. На Рис.6 представлены кривые равновесия фаз чистого вещества (воды) вблизи 0оС. Кривая кипения показывает ход давления насыщенного пара с ростом температуры.

Р



вода кривая кипения
кривая плавления критическая точка 4,58 тройная точка

мм.рт.ст. лёд кривая пар

возгонки



273,16 К Т

Рис.6. Кривые равновесия фаз чистой воды.
Фазовая диаграмма воды демонстрирует свойство, которое термодинамически хотя и не запрещено, однако является довольно необычным для природных веществ, а именно, одна из кривых равновесия фаз (вода-лед) имеет отрицательный наклон, что связано с увеличением объема при превращении воды в лед (лед, как известно, плавает в воде, а, например, оливковое масло при замерзании с поверхности опускается на дно сосуда хлопьями). Обычно удельный объем вещества в жидком состоянии больше, чем в твердом (хотя аномально в этом отношении и аналогично воде ведет себя чугун, что весьма удобно при использовании чугуна для художественных отливок, так как чугун хорошо заполняет подробности рельефа литейной формы). Отрицательный наклон кривой плавления льда имеет значение для катания на коньках – лед плавится под уголком лезвия конька (при хорошей заточке, естественно), и конек, заглубляясь в лед, позволяет отталкиваться от льда. Знание из опыта удельной теплоты плавления льда и изменения удельного объема при фазовом переходе позволяет через уравнение Клапейрона-Клаузиуса количественно достаточно точно просчитать это явление.

Существование критической точки позволяет перейти из области пара в область жидкости без видимого фазового перехода, но эта возможность уже была видна при рассмотрении изотерм газа Ван-дер-Ваальса.

При фазовых переходах первого рода имеет место поглощение (выделение) теплоты фазового перехода. Это происходит при плавлении, испарении, возгонке и при переходе кристаллических тел из одной кристаллической формы в другую (например, переход серы из ромбической формы в моноклинную при 3690К, с последующим плавлением при 393оК).

Следует, для общности, упомянуть о существовании фазовых переходов второго рода, при которых нет поглощения (выделения) теплоты перехода и нет изменения удельного объема, но в точке фазового перехода скачком меняются теплоемкость, коэффициент температурного расширения и сжимаемость, то есть изменяются вторые производные от термодинамических потенциалов. Примером фазовых переходов второго рода может служить точка Кюри – температура, при которой ферромагнетик теряет свои ферромагнитные свойства и превращается в обычный парамагнетик (например, для железа эта температура равна 10430 К).

^ 9. КРИТЕРИИ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ
9.1. Тепловое равновесие и неравенство Клаузиуса

Как уже отмечалось ранее, полученные в классической феноменологической термодинамике («термостатике») связи между термодинамическими величинами относятся к состояниям термодинамического равновесия или весьма близким к ним (пренебрежимо мало отличающимся от равновесных). Что же касается процессов перехода к состоянию теплового равновесия, то о них до сих пор говорилось только, что изолированная (полностью отключенная от всех внешних влияний) термодинамическая система сама собой идет к состоянию термодинамического равновесия, то есть к выравниванию по всему объему всех интенсивных термодинамических характеристик. Этот опытный факт зафиксирован в той части содержания второго начала термодинамики, которая утверждает, что энтропия любой изолированной термодинамической системы стремится к максимуму.

Этот критерий термодинамического равновесия (максимальность энтропии) связан с выполнением довольно неудобных для практических приложений условий. Действительно, стремление энтропии к максимуму при приближении термодинамической системы к равновесному состоянию справедливо только для изолированных систем, что, конечно, отнюдь не всегда осуществляется на практике, и, следовательно, этот критерий равновесия для практики не всегда удобен. Поэтому необходимо рассмотреть критерии равновесия для неизолированных термодинамических систем и найти другие (не энтропию) функции состояния термодинамической системы, которые будут стремиться к экстремуму при самопроизвольном переходе к равновесному состоянию термодинамических систем в условиях неизолированности, то есть в условиях наличия силовых, тепловых и вещественных контактов систем с внешними телами.

Неравновесность накладывает определенные ограничения. В феноменологической термодинамике термодинамические функции состояния, уравнения состояния (термические и термодинамические) и даже некоторые термодинамические параметры (например, температура) определены, то есть имеют смысл, только для систем, находящихся в равновесном состоянии. Поэтому следует особо отметить, о чем может идти речь, когда обсуждается состояние системы, не находящейся в состоянии равновесия, а лишь приближающейся к этому состоянию. То есть, следует определиться с пониманием того, что подразумевается под параметрами и функциями состояния в условиях некоторого отклонения от состояния равновесия, а именно, определиться с тем, что мы понимаем под вариациями функций и параметров. Под этим надлежит понимать такие процедуры, выполняемые с термодинамическими системами, при которых на функции и параметры накладываются определенные ограничения. А именно, мы будем считать, что рассматриваемую термодинамическую систему всегда можно разделить на квазиизолированные друг от друга области (то есть, энергия взаимодействия частей системы много меньше энергии каждой из частей). В таких случаях термодинамические состояния в подсистемах можно рассматривать как независимые друг от друга и равновесные (небольшие подсистемы быстрее приходят в состояние равновесия, чем вся система). При этом аддитивные функции состояния (например, энергия или энтропия) могут считаться равными сумме функций, найденных для равновесных частей, хотя, конечно, их значения могут отличаться от тех значений, которые они имели бы при установлении общего равновесия во всей системе.

Для получения общих условий равновесия в термодинамических системах воспользуемся неравенством Клаузиуса (5.6), соединяющим в себе первое и второе начало термодинамики (где нас будет интересовать самопроизвольное стремление энтропии к максимуму при стремлении термодинамической системы к равновесию)

TdS > dU + PdV .

Далее мы будем рассматривать гипотетические вариации функций состояния системы, выводящие систему из состояния равновесия. В таких случаях возвратный переход системы при восстановлении равновесия, как полагается, необратим, но для самих таких гипотетических вариаций неравенство Клаузиуса (в результате изменения знаков) дает выражение

- S > - ( U + PV) ,

которое превращается в базовое уравнение для выяснения общих условий равновесия

U + PV - S > 0. (9.1)

Это уравнение есть общее неравенство для вариаций в термодинамических системах. Еще раз подчеркнем, что знак этого неравенства противоположен знаку неравенства Клаузиуса, поскольку здесь речь идет не о действительных изменениях, приводящих систему в равновесие, а о гипотетических вариациях, выводящих систему из состояния термодинамического равновесия.

Эти мысленные эксперименты с термодинамическими системами необходимы нам, чтобы понять, как поведут себя различные функции состояния при небольших отклонениях от равновесия. То есть мы рассматриваем здесь, что стало бы с интересующими нас функциями, если бы система сама собой немного отклонилась от равновесного состояния.
Изолированные термодинамические системы

Когда говорят о замкнутых, то есть полностью изолированных от внешних влияний термодинамических системах, то очевидно, что у них остаются неизменными внутренняя энергия и объем. Следовательно, вариации этих величин U = 0 и V = 0. Из неравенства (9.1) и положительности абсолютной температуры сразу следует условие равновесия в изолированной системе
(S)U,V < 0. (9.2)

Это означает, что в равновесии энтропия максимальна относительно любых вариаций, при которых внутренняя энергия системы и ее объем остаются неизменными. Это соответствует уже ранее известному содержанию второго начала термодинамики, утверждающему, что в замкнутых системах энтропия самопроизвольно может только возрастать (либо сохраняется).

Если нет процессов выравнивания температур и давлений (например, в силу быстроты изменения внешних параметров все изменения в термодинамической системе происходят обратимым образом, поскольку процессы релаксации просто не успевают произойти), то энтропия сохраняется и S = 0. Тогда из неравенства (9.1) для случая неизменного объема, когда V = 0, следует

(U)S,V > 0, (9.3)

что означает минимальность внутренней энергии при равновесии термодинамических систем, если происходящие в них процессы обратимы, а объём неизменен.

Это условие аналогично принципу виртуальных (возможных) перемещений в механике, выражающему необходимые и достаточные условия равновесия любой системы материальных точек.
9.2. ^ Критерии равновесия в открытых термодинамических системах

Предположение об изолированности систем сильно ограничивает применение на практике полученных выше результатов, поскольку в технике термодинамические системы, как правило, связаны с окружающими телами (системами). Обычно различают связи:

  • механическую (через силовое воздействие);

  • тепловую (обычно через столь быстро осуществляемый теплообмен, что обеспечивается равенство температуры системы с температурой окружающей среды);

  • вещественную, часто именуемую материальной (через обмен веществом с окружающими телами, играющий важную роль, например, при фазовых переходах первого рода).

Открытыми следует также считать термодинамические системы, в которых происходят химические реакции. Хотя такие системы могут и не иметь перечисленных выше связей с внешними телами, но масса каждого компонента в системе будет изменяться до достижения равновесного состава, а это равносильно вещественной связи.

Рассмотрим, какие изменения вносит в условия равновесия открытость термодинамических систем.
Системы с механической связью

Если связь термодинамической системы с окружающими телами силовая, то есть чисто механическая, а не тепловая (система адиабатически изолирована, и теплообмена с окружением нет), тогда равновесию по-прежнему соответствует максимум энтропии (работа силы, как известно, не влияет на энтропию), но условие минимума внутренней энергии уже не выполняется. Легко понять, что к минимуму стремится не сама внутренняя энергия, а ее сумма с потенциальной энергией, характеризующей силовую связь с внешними телами. В общем случае потенциал внешних сил, конечно, отличен от РV, но чаще всего, когда нет электрических и магнитных влияний, такая связь осуществляется посредством внешнего давления, которое, как правило, постоянно. В этом случае общее (9.1) выражение для вариации (с учетом вариации для энтропии S = 0) позволяет записать условие равновесия сначала в виде U + PV > 0, а с учетом постоянства давления как U + PV) > 0. Поскольку функция состояния, именуемая энтальпией такова: Н = U + PV, то условие термодинамического равновесия в системах с механической связью при постоянном давлении принимает вид
(Н ) S > 0. (9.4)

Это означает, что при отсутствии теплообмена (энтропия сохраняется) и при постоянном давлении равновесию в термодинамических системах соответствует минимум энтальпии, то есть для систем с механической связью, находящихся под постоянным давлением, энтальпия играет такую же роль, какую играет внутренняя энергия для систем с неизменным объемом при протекании в них обратимых процессов.
Системы с тепловой связью

Рассмотрим, что нового вносит в условия равновесия термодинамических систем хороший теплообмен с окружающими телами, когда температура термодинамической системы все время успевает сравняться с температурой окружающей среды. Наиболее важным для практики является, конечно, случай изотермических процессов, идущих в условиях, близких к равновесным процессам.

Если, наряду с температурой, неизменным оказывается также объем системы (V = 0), то общее неравенство для вариаций (9.1) с учетом постоянства температуры дает выражение U- ТS) > 0. Поскольку функция состояния термодинамической системы, именуемая свободной энергией есть F = U- ТS , то для систем с хорошим теплообменом (Т = const.) и при постоянстве объема условие термодинамического равновесия принимает вид

(F)Т,V > 0. (9.5)

Аналогичным образом из общего неравенства для вариаций (9.1) можно получить условие изотермического равновесия при постоянном давлении, что выразится в требовании минимальности термодинамического потенциала Гиббса G = U + PV – TS, то есть в виде

(G) Т,Р > 0. (9.6)

Напомним еще раз, что в условиях равновесных (обратимых) процессов все эти функции (внутренняя энергия, энтальпия, свободная энергия и потенциал Гиббса) играют роль, аналогичную роли потенциальной энергии в механике. Подобно потенциальной энергии в механике все эти функции минимальны, когда система находится в состоянии теплового равновесия, и следовательно, любое выведение системы из этого состояния связано с затратой работы внешних сил.

.

9.3. ^ Реакция термодинамической системы на внешнее воздействие. Принцип Ле-Шателье-Брауна

Принцип Ле-Шателье-Брауна предсказывает направление процессов, которые будут протекать в термодинамической системе, при выведении системы внешним воздействием из устойчивого равновесного состояния, хотя этот принцип зачастую не позволяет сделать сколько-нибудь точных количественных заключений.

Исторически принцип Ле-Шателье-Брауна был получен из аналогии с законом индукции Ленца: При изменении магнитного потока сквозь проводящий электрический контур в этом контуре возникает ток, такой по величине и направлению, что он своим магнитным полем стремится компенсировать то изменение магнитного потока, которым он вызывается.

Принцип Ле-Шателье-Брауна утверждает, что всякое внешнее воздействие вызывает в равновесной термодинамической системе такие побочные процессы, которые стремятся ослабить прямой результат этого внешнего воздействия. То есть, когда термодинамическая система испытывает внешнее воздействие, изменяющее непосредственно один из параметров, характеризующих состояние системы, то другой параметр, прямо не связанный с этим внешним воздействием, меняется таким образом, чтобы затруднить изменение первого параметра. Так, например, если внезапно увеличить давление извне на термодинамическую систему, то первое время, пока процесс сжатия происходит практически адиабатно, сжатию противодействует не только уменьшение объема и прямо связанное с ним повышение давления, но и повышение температуры как результат адиабатного сжатия. Здесь побочный эффект – повышение температуры - препятствует прямому эффекту внешнего воздействия – уменьшению объема, поскольку повышение температуры вызывает повышение давления внутри системы и сжимать систему становится труднее. Таким образом, принцип Ле-Шателье-Брауна утверждает, что внешнее воздействие, выводящее термодинамическую систему из состояния устойчивого равновесия, провоцирует в этой системе процессы такого направления, что они стремятся воспрепятствовать изменениям в системе, вызываемым этим внешним воздействием.

Итак, равновесие термодинамической системы, подвергшейся внешнему воздействию, смещается в таком направлении, чтобы по возможности скомпенсировать результат внешнего воздействия.

Практическая ценность принципа Ле-Шателье-Брауна состоит в том, что он позволяет без конкретного анализа предсказывать направление, в котором будут изменяться термодинамические характеристики равновесной системы, подвергшейся внешнему воздействию.

Этот принцип оказался удобен для выяснения, в каком направлении смещается состояние равновесия сложной, многокомпонентной системы в случаях, когда детальный анализ затруднителен. Особенно полезным этот принцип оказался в применении к химическим реакциям. Так, если химическая реакция эндотермическая, то есть протекает с поглощением теплоты, то нагревание системы ведет к возрастанию выхода продуктов реакции, и наоборот, если реакция экзотермическая (с выделением теплоты), то нагревание системы ведет к уменьшению выхода продуктов реакции. Понятно, что знание такого поведения химических реакций чрезвычайно полезно для практики, так как позволяет в зависимости от потребности усилить или уменьшить эффект внешнего воздействия.

^ 10. ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ
10.1. Связь термодинамики и статистической физики. Термодинамическая вероятность (статистический вес) состояния системы и энтропия
Ранее уже упоминалось, что с точки зрения механики описание состояния термодинамической системы через указание значений термодинамических параметров является неполным, так как для полного описания следует указать значения координат и импульсов всех частиц, составляющих термодинамическую систему. Понятно, что для всех частиц системы (при их числе порядка числа Авогадро) это требование невыполнимо. Однако можно найти какая часть (какая доля) всех частиц имеет координаты и импульсы, лежащие в интересующих нас пределах. Этим занимается статистическая механика, задачей которой является нахождение функции распределения частиц по координатам и импульсам, часто именуемой плотностью вероятности (хотя в математике функцией распределения называется функция, производная от которой и есть плотность вероятности). Эта функция показывает вероятность того, что частица имеет координаты и импульсы вблизи определенных значений. Хотя координаты и импульсы отдельных частиц системы все время изменяются в результате взаимодействий (столкновений), но в условиях термодинамического равновесия функция распределения частиц по координатам и импульсам с течением времени не изменяется. Это распределение при равновесном состоянии системы остается неизменным потому, что, несмотря на постоянное изменение каждой частицей ее положения в фазовом (координатно-импульсном) пространстве, все время происходит замещение одних частиц в фазовом пространстве другими, то есть тепловое равновесие в термодинамической системе носит динамический характер. Если состояние системы первоначально не было равновесным, то функция распределения частиц по координатам и импульсам со временем эволюционирует (процесс релаксации) к равновесному распределению, которое со временем уже очень редко испытывает заметные на макроскопическом уровне самопроизвольные отклонения (флуктуации) от распределения, соответствующего полностью равновесному.

Может возникнуть вопрос, откуда берется необратимость, если все микропроцессы обратимы (согласно принципу микроскопической обратимости)? Ответ следующий. Необратимость релаксационных процессов порождается статистическим характером макроскопически наблюдаемых явлений и вероятностным характером соответствующих им закономерностей. Одно и то же с макроскопической точки зрения состояние (та же самая функция распределения) может быть осуществлено большим числом различных микросостояний. Так, если две частицы обменялись местами в фазовом пространстве (обменялись энергиями), то это уже другое микросостояние, но с макроскопической точки зрения ничего не изменилось – сохранилось распределение частиц по фазовому пространству.

^ Число микроскопически различных способов W, осуществляющих одно и то же макросостояние, получило в статистической механике название термодинамической вероятности или статистического веса этого макросостояния. Для нахождения этого числа используется раздел математики, именуемый комбинаторикой. Так, например, число микроскопических способов такого распределения N молекул газа по объему, чтобы в одной половине объема оказались n молекул, а в другой остальные (N – n), находится согласно правилам комбинаторики по формуле для числа сочетаний из N по n, то есть



Эта функция, очевидно, имеет максимум при n = N/2, поскольку в этом случае также и (N – n) = N/2, а когда система отклоняется от этого равнораспределения, то, хотя в знаменателе (при постоянном числителе) один из сомножителей уменьшается, зато другой сомножитель увеличивается, и при этом в большей степени. Так, например, при отклонении на единицу числа молекул n от равнораспределения в знаменателе пропадает множитель N/2, но зато появляется (N/2 + 1), и в целом термодинамическая вероятность W(N,n) (статистический вес) уменьшается, и тем сильнее, чем больше отклонение от равнораспределения.

Все микросостояния системы при сохранении энергии системы равновероятны, то есть система пребывает в каждом из них одинаковое (хотя и очень маленькое с нашей, макроскопической точки зрения) время. Это предполагается в статистической механике. Поэтому вероятность приблизительно равномерного заполнения объема молекулами (при большом числе молекул) подавляюще велика по сравнению с тем, чтобы малая доля молекул оказалась в одной половине объема, а все остальные – в другой. Если искусственно создать неравномерность распределения молекул газа по занимаемому им объему, то такая система, будучи предоставлена себе самой, через некоторое время самопроизвольно придет к равнораспределению молекул по объему (выравнивание концентраций). Точно так же и температура, если она была сначала различной в разных частях системы, со временем выравнивается по всему объему.

Т
еперь вспомним, что в изолированной термодинамической системе энтропия самопроизвольно возрастает и остается постоянной при достижении максимума, то есть (см. (5.5))

где знак равенства относится к обратимым процессам.

В способности энтропии самопроизвольно возрастать есть нечто чуждое нашей интуиции, воспитанной на механических представлениях. Действительно, почти все законы механики (кроме связанных с трением, но это уже не вполне механика), а также оптики и отчасти электромагнетизма, обратимы во времени (почему так легко и воспринимается нами принцип микроскопической обратимости).

Для объяснения необратимости макроскопических явлений австрийский физик Людвиг Больцман в 1872 году ввел в теорию теплоты статистические представления (которые уже отчасти использовались ранее Максвеллом при рассмотрении распределения молекул газа по скоростям). Больцман предложил каждому макроскопическому состоянию приписывать статистический вес (позднее названный Планком термодинамической вероятностью), равный числу различных механических состояний микрочастиц (образующих термодинамическую систему), отвечающих одному и тому же набору значений термодинамических параметров, определяющих в термодинамике, как известно, макроскопическое состояние термодинамической системы. При таком подходе возрастание энтропии в предоставленной себе самой термодинамической системе просто означает переход в такие состояния, термодинамические вероятности которых больше. И так должно продолжаться до тех пор, пока не будет достигнуто наиболее вероятное состояние, соответствующее максимальной энтропии. Вблизи этого состояния система и будет находиться неопределенно долгое время, испытывая иногда самопроизвольные случайные отклонения от равновесия (флуктуации), теория которых рассматривается в статистической механике, а в феноменологической термодинамике флуктуациями просто пренебрегают.

Таким образом, возрастание энтропии не является абсолютным законом в термодинамике (хотя в статистической механике это обосновывается неустойчивостью решений уравнений движения микрочастиц).

Больцман предположил следующую связь между энтропией и термодинамической вероятностью
S = k.lnW, (10.1)
где k – постоянная, получившая позднее название постоянной Больцмана.

Формула (10.1) явно соответствует всем требованиям, предъявляемым к энтропии. Энтропия функция аддитивная (как и все функции состояния), то есть энтропия системы равна сумме энтропий подсистем, S = SA + SB, а вероятность состояния системы (согласно теории вероятностей) равна произведению вероятностей, относящихся к подсистемам А и В, что означает W = WA·WB. Этому требованию удовлетворяет логарифмический характер функции (10.1). Отвечает она также требованию монотонного возрастания с ростом термодинамической вероятности.

Коэффициент k, входящий в формулу Больцмана, как величину универсальную, можно вычислить, если применить эту формулу к конкретной термодинамической системе.

Воспользуемся для этого, как обычно, моделью идеального газа.

Отношение вероятностей нахождения одной молекулы газа в объемах V1 и V2 (в силу хаотичности движения молекулы и, следовательно, равной вероятности нахождения в одинаковых объемах) равно отношению этих объемов, то есть

В

силу теоремы о произведении вероятностей независимых событий, отношение вероятностей нахождения в объемах V2 и V1 всех N молекул газа равно

Поскольку согласно формуле Больцмана (10.1) изменение энтропии определяется отношением термодинамических вероятностей, то для одного моля идеального газа имеем

г
де NA - число Авогадро.

Теперь вычислим изменение энтропии одного моля идеального газа в обратимом изотермическом процессе по формуле Клаузиуса (5.1), используя уравнение состояния идеального газа (3.1) PV = RT и неизменность внутренней энергии при сохранении температуры, то есть δQ = PdV,

И
з сравнения полученных двумя способами изменений энтропии обнаруживаем, что

R = k NA . (10.2)
Зная число Авогадро, легко вычислить коэффициент k в формуле Больцмана (10.1): k = 1,38·10-23 Дж/оК. Он является также переводным коэффициентом между единицами температуры, выраженными в джоулях, и единицами, выраженными в градусах Кельвина.
1   2   3   4   5   6   7   8

Похожие:

А. А. Шарц Учебное пособие iconКейн экология упражнения, задачи и задания в тестовой форме учебное пособие
Учебное пособие предназначено для проведения практических работ по курсу Экология на технических специальностях. Учебное пособие...

А. А. Шарц Учебное пособие iconИсследование электрических цепей учебное пособие Часть III челябинск
Учебное пособие предназначено для выполнения лабораторных работ по дисциплине «Теоретические основы электротехники» студентами энергетических...

А. А. Шарц Учебное пособие iconУчебное пособие
Медицинская подготовка командного состава судов: Учебное пособие. М.: Мортехинформреклама, 1993. 152с

А. А. Шарц Учебное пособие iconЭкономика учебное пособие
Учебное пособие предназначено для студентов, обучающихся на лечебном факультете

А. А. Шарц Учебное пособие iconЦенообразование (учебное пособие)
Учебное пособие предназначено для студентов экономической специальности 080502, аспирантов, преподавателей и слушателей профессиональной...

А. А. Шарц Учебное пособие iconI : Учебное пособие/ Под ред. И. А. Жеребкиной
...

А. А. Шарц Учебное пособие iconУчебное пособие Омск 2012 удк 616. 8(075) ббк 56. 12я73
Учебное пособие предназначено для студентов старших курсов медицинских вузов

А. А. Шарц Учебное пособие iconУчебное пособие
Учебное пособие предназначено для студентов и аспирантов, изучающих социологию культуры. Содержание курса соответствует Государственному...

А. А. Шарц Учебное пособие iconУчебное пособие. Изд. 2-е Ростов н/Д: "Феникс", 2003. 448 с. (Серия "Высшее образование".)
Учебное пособие написано в соответствии с новыми требованиями, содержащимися в государственных образовательных стандартах

А. А. Шарц Учебное пособие iconУчебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета
Зоопсихология и сравнительная психология: Учебное пособие. Ставрополь: скси, 2005. 272 с

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов