Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей




НазваниеМеханическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей
страница1/8
Дата публикации22.06.2013
Размер0.77 Mb.
ТипДокументы
zadocs.ru > Астрономия > Документы
  1   2   3   4   5   6   7   8
Билет№1

1.Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей.

    Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца.   Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчета. Система координат, тело отсчета, с которым она связана, и выбранный способ измерения времени образуют систему отсчета.   Положение тела задается координатой. Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем (l). Единица пути — метр.
     Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.
         Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение — величина векторная. Единица перемещения — метр.
         Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым, если скорость при неравномерном движении в течение этого промежутка не менялась. Определяющая формула скорости имеет вид v = s/t. Единица скорости — м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.
         Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле
     Единица ускорения — .   Характеристики механического движения связаны между собой основными кинематическими уравнениями:  
       Предположим, что тело движется без ускорения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид:
           Движение, при котором скорость тела не меняется, т. е. тело за любые равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением.
        Во время старта скорость ракеты быстро возрастает, т. е. ускорение а > 0, а = const.     В этом случае кинематические уравнения выглядят так:     
     При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноускоренным.
         При торможении автомобиля скорость уменьшается одинаково за любые равные промежутки времени, ускорение направлено в сторону, противоположную движению; так как скорость уменьшается, то уравнения принимают вид:
      Такое движение называют равнозамедленным.
         Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при переходе из одной системы к другой, т. е. характер движения зависит от выбора системы отсчета, в этом и проявляется относительность движения. Например, в воздухе происходит дозаправка самолета топливом. В системе отсчета, связанной с самолетом, другой самолет находится в покое, а в системе отсчета, связанной с Землей, оба самолета находятся в движении.

^ 2. Электромагнитные излучения различных диапазонов длин волн. Свойства и применения этих излучений.

Узкий параллельный пучок белого света при прохождении сквозь призму разлагается на пучки света разного цвета. Цветная полоса, видимая при этом, называется сплошным спектром. Явление зависимости скорости света от длины волны (частоты) называют дисперсией света. Этот эффект объясняется тем, что белый свет состоит из ЭМ-волн разных длин волны, от которых и зависит показатель преломления. Наибольшее значение он имеет для самой короткой волны – фиолетовой, наименьшее – для красно. В вакууме скорость света независимо от его частоты одинакова. Если источником спектра является разреженный газ, то спектр имеет вид узких линий на черном фоне. Сжатые газы, жидкости и твердые тела испускают сплошной спектр, где цвета плавно переходят друг в друга. Природа возникновения спектра объясняется тем, что каждому элементу присущ свой специфический набор излучаемого спектра. Это свойство позволяет применять спектральный анализ для выявления химического состава вещества. Спектроскопом называется прибор, с помощью которого исследуется спектральный состав света, испускаемого некоторым источником. Разложение производится с помощью дифракционной решетки(лучше) или призмы, для исследования ультрафиолетовой области применяется кварцевая оптика.


Билет№2

^ 1. Принцип действия тепловых двигателей КПД теплового двигателя. Тепловые двигатели и охрана окружающей среды.
Обычно в тепловых машинах работа совершается расширяющимся газом. Газ, совершающий работу при расширении, называется рабочим телом. Расширение газа происходит в результате повышения его температуры и давления при нагревании. Устройство, от которого рабочее тело получает количество теплоты Q называется нагревателем. Устройство, которому машина отдает тепло после совершения рабочего хода, называется холодильником. Сначала изохорически растет давление, изобарически расширяется, изохорически охлаждается, изобарически сжимается. В результате совершения рабочего цикла газ возвращается в начальное состояние, его внутренняя энергия принимает исходное значение. Это значит, что . Согласно первому закону термодинамики, . Работа, совершаемая телом за цикл, равна Q. Количество теплоты, полученное телом за цикл, равно разности полученного от нагревателя и отданного холодильнику. Следовательно, . Коэффициентом полезного действия машины называется отношение полезно использованной к затраченной энергии . Для повышения КПД тепловых машин существует 2 пути: повышение температуры T1 нагревателя и понижение температуры T2 холодильника (КПД max=(T2-T1)/T1 КПД тепловой машины мог бы стать равным 1, если бы имелась возможность использовать холодильник с температурой равной абсолютному нулю. Однако этот путь не может быть достигнут. Наиболее приемлимыми холодлильниками для реальных тепловых машин являются атмосферный воздух или вода при T около 300K Следовательно основной путь повышения КПД – это повышение температуры нагревателя.

Один из путей уменьшения загрязнения окружающей среды – переход от использования в автомобилях карбюраторных бензиновых двигателей к использованию дизельных двигателей, в топливо которых не доюавля.т свинца (fixed) Перспективными являются разработку и испытания автомобилей, в которых вместо бензина двигателей используется электродвигатель, питающийся от аккумулятора, или двигаетль, использующий в качестве топлива водород. В последнем типае двигателей при сгорании водорода образуется вода.

^ 2. Методы регистрации ионизирующих излучений.

Быстрые заряженные частицы, проходя через вещество, оставляют  за собой след ионизированных и возбужденных атомов. Нейтроны и γ-кванты, взаимодействуя с ядрами и атомами, создают вторичные быстрые заряженные частицы. По ионизационным следам вторичных частиц могут быть обнаружены первичные частицы - нейтроны и γ-кванты.

Приборы, регистрирующие ионизирующее излучение, делятся на две группы. Приборы первой группы регистрируют факт пролета частицы и в некоторых случаях позволяют судить о ее энергии. Ко второй группе относятся трековые приборы, позволяющие наблюдать траектории частицы - треки.

Сцинтиляционный счетчик регистрирует частицу по световым вспышкам, которые возникают при ее пролете. Вспышки света возникают, когда возбужденные быстрой частицей атомы возвращаются в нормальное состояние. Эти вспышки преобразуются фотоэлектронным умножителем в электрический сигнал, который регистрируется электронной аппаратурой. Так  как интенсивность световой вспышки пропорциональна энергии первичной частицы, то с  помощью сцинтиляционного счетчика можно измерять энергию регистрируемой частицы.

Ионизационная камера используется для измерения доз ионизирующих излучений. Она представляет собой цилиндрический конденсатор, между электродами которого находится воздух или другой газ. Регистрируемая частица ионизирует этот газ. Напряжение на электродах подбирают так, чтобы на них попадали все образовавшиеся ионы. Сила ионизационного тока пропорциональна мощности дозы излучения (18.8).

Газоразрядный счетчик конструктивно похож на ионизационную камеру, но в нем напряжение на электродах достаточно высокое для вторичной ионизации газа, вызываемой столкновениями первичных ионов с атомами или молекулами газа.

Полупроводниковый счетчик - это детектор частиц, основным элементом которого является полупроводниковый диод На него подается запирающее напряжение, при отсутствии излучения ток через диод не течет. Быстрая заряженная частица, проходя через область p-n перехода, порождает электроны и дырки. В результате возникает импульс тока, пропорциональный количеству порожденных носителей тока.

Камера Вильсона является самым первым трековым прибором. Она была создана в 1912 году англичанином Ч. Вильсоном. След ионов, оставляемых заряженной частицей, становится видимым, благодаря конденсации пересыщенных паров какой-либо жидкости. По характеру и форме этих треков из тумана можно судить о типах частиц, прошедших через камеру. В 1927 году советский ученый Д.В. Скобельцын поместил камеру Вильсона в магнитное поле. Это значительно расширило возможности прибора: по искривлению траектории можно определить знак заряда. Если известны заряд и масса частицы, то по радиусу кривизны трека можно определить энергию частицы.

Пузырьковая камера была изобретена в 1952 году американцем . Глезером. Она похожа на камеру Вильсона, но рабочим веществом в ней является перегретая жидкость. При прохождении быстрой заряженной частицы вдоль ее траектории образуются пузырьки пара. Преимуществом пузырьковой камеры перед камерой Вильсона является значительно большая плотность рабочего вещества, в результате чего эффективность взаимодействия с ним регистрируемых частиц значительно возрастает.

Искровая камера была сконструирована в 1957 году Т. Краншоу и де Биром. Она состоит из системы плоских параллельных друг другу электродов, которые через один электрически соединяются друг с другом. Между этими группами электродов в момент пролета частицы подается высокое напряжение. В результате траектория частицы будет отмечена цепочкой искр. Запуск камеры производится автоматически, по сигналу дополнительных сцинтиляционных счетчиков.

Эмульсионная камера была предложена в 1927 году советскими физиками  Л.В. Мысовским и А.П. Ждановым. Как мы знаем, действие быстрых заряженных частиц на фотопластинку позволило А. Беккерелю открыть радиоактивность. Недостаток фотопластинки - маленькая толщина эмульсионного слоя. В эмульсионных камерах облучению подвергаются толстые пачки, составленные из отдельных слоев фотоэмульсии. Преимущество этого метода перед камерой Вильсона и даже пузырьковой камерой - в  большей плотности эмульсии. Поэтому фотоэмульсии применяют для изучения частиц очень высоких энергий.

Билет№3
^ 1. Электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление проводников.
Электродви­жущая сила в замкнутом контуре представляет собой отношение рабо­ты сторонних сил при перемещении заряда вдоль контура к заряду:

Электродвижущую силу выража­ют в вольтах.

^ Электро­движущая сила гальванического эле­мента есть работа сторонних

сил при перемещении единичного положи­тельного заряда внутри элемента от одного полюса к другому.

^ Сопротивление источника часто на­зывают внутренним сопротивлением в отличие от внешнего сопротивле­ния R цепи. В генераторе r это сопротивление обмоток, а в гальва­ническом элементе — сопротивление раствора электролита и электродов. Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление R+r цепи.

Произведение силы тока и сопро­тивления участка цепи часто назы­вают падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внут­реннем и внешнем участках замкну­той цепи. Обычно закон Ома для замкну­той цепи записывают в форме:

где R – сопротивление нагрузки, ε –эдс , r- внутреннее сопротивление.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех вели­чин: ЭДС ε, сопротивлений R и r внешнего и внутреннего участков цепи. Внутреннее сопротивление ис­точника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи (R>>r). При этом напряжение на зажимах источ­ника приблизительно равно ЭДС:

U=IRε.

При коротком замыкании, когда R→0, сила тока в цепи определяет­ся именно внутренним сопротивле­нием источника и при электродви­жущей силе в несколько вольт мо­жет оказаться очень большой, если r мало (например, у аккумулятора r0,1—0,001 Ом). Провода могут расплавиться, а сам источник выйти из строя.

Если цепь содержит несколько

последовательно соединенных эле­ментов с ЭДС ε1 , ε2, ε3 и т.д., то полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элементов.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то ЭДС >0.

^ 2. Электромагнитная природа света. Волновые и квантовые свойства света.

    Свет — это электромагнитные волны в интервале частот , воспринимаемых человеческим глазом, т. е. длин волн в интервале 380 - 770 нм.
         Свету присущи все свойства электромагнитных волн: отражение, преломление, интерференция, дифракция, поляризация. Свет может оказывать давление на вещество, поглощаться средой, вызывать явление фотоэффекта. Имеет конечную скорость распространения в вакууме 300 000 км/с, а в среде скорость убывает.
         Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции. Интерференцией света называют пространственное перераспределение светового потока при наложении двух (или нескольких) когерентных световых волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности (интерференционная картина). Интерференцией света объясняется окраска мыльных пузырей и тонких масляных пленок на воде, хотя мыльный раствор и масло бесцветны.    
     При прохождении света через малое круглое отверстие на экране вокруг центрального светлого пятна наблюдаются чередующиеся темные и светлые кольца; если свет проходит через узкую щель, то получается картина из чередующихся светлых и темных полос.
         Явление отклонения света от прямолинейного направления распространения при прохождении у края преграды называют дифракцией света. Дифракция объясняется тем, что световые волны, приходящие в результате отклонения из разных точек отверстия в одну точку на экране, интерферируют между собой. Дифракция света используется в спектральных приборах, основным элементом которых является дифракционная решетка. Дифракционная решетка представляет собой прозрачную пластинку с нанесенной на ней системой параллельных непрозрачных полос, расположенных на одинаковых расстояниях друг от друга.
         Опыт показывает, что интенсивность светового пучка, проходящего через некоторые кристаллы, например исландского шпата, зависит от взаимной ориентации двух кристаллов. При одинаковой ориентации кристаллов свет проходит через второй кристалл без ослабления.  Если же второй кристалл повернут на 90°, то свет через него не проходит. Происходит явление поляризации, т. е. кристалл пропускает только такие волны, в которых колебания вектора напряженности электрического поля совершаются в одной плоскости — плоскости поляризации. Явление поляризации доказывает волновую природу света и поперечность световых волн.
         Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разного цвета, при этом наибольшее отклонение к основанию призмы имеют лучи фиолетового цвета. Объясняется разложение белого света тем, что белый свет состоит из электромагнитных волн с разной длиной волны, а показатель преломления света зависит от длины его волны. Показатель преломления связан со скоростью света в среде, следовательно, скорость света в среде зависит от длины волны. Это явление и называют дисперсией света.
    
     На основании совпадения экспериментально измеренного значения скорости электромагнитных волн Максвелл высказал предположение, что свет — это электромагнитная волна. Эта гипотеза подтверждена свойствами, которыми обладает свет.
    
  1   2   3   4   5   6   7   8

Добавить документ в свой блог или на сайт

Похожие:

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconП лан ответа
Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость....

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconФорма № н 05 Крымское республиканское высшее учебное заведение Симферопольский...
Механическое движение. Относительность движения. Система отсчета. Путь и перемещение. Скорость. Сложение скоростей

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconПеречень вопросов, выносимых на зачет по дисциплине «физика» для бакалавров по направлению
Механическое движение. Система отсчета. Траектория, перемещение, путь, скорость, ускорение. Кинематические уравнения движения: равномерное...

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconЗакон Максвелла о распределении молекул идеального газа по скоростям. Опыт Штерна
Материальная точка. Система отсчета. Кинематическое уравнение движения точки. Траектория. Путь. Перемещение. Скорость. Ускорение....

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconМеханическое движение. Относительность движения. Система отсчета....
Енение положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалаторе в метро, находится в покое...

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconВопросы к переводному экзамену по физике
Механическое движение. Тело отсчета. Система отсчета. Скорость. Равномерное прямолинейное движение. Относительность механического...

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconВопросы по физике (1 часть)
Механическое движение. Материальная точка. Определение раздела «Кинематика». Пространство и время. Система отсчета. Траектория, путь,...

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей icon10 класс Билеты по физике
...

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconЗакон сохранения импульса. Уравнение движения тела переменной массы. Формула Циолковского
Физические модели: материальная точка, абсолютно твердое тело. Система отсчета, траектория, путь, перемещение. Поступательное и вращательное...

Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Равномерное и равноускоренное движение. Сложение скоростей iconЭкзаменационный вопросы
Основные понятия кинематика (механическое движение, система отсчёта, траектория перемещения, поступательное и вращательное движение,...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов