Рпга реакция прямой гемагглютиннации




НазваниеРпга реакция прямой гемагглютиннации
страница11/28
Дата публикации27.07.2013
Размер3.06 Mb.
ТипДокументы
zadocs.ru > Биология > Документы
1   ...   7   8   9   10   11   12   13   14   ...   28

^ Реакции II типа (цитотоксические, точнее цитолитические). В их основе – выработка IgG, направленных против компонентов мембран  организма. В качестве таких АГ могут выступать аутоантигены клеток и тканей  и АГ, вторично фиксированные на клеточных мембранах (лекарственные аллергены). IgG в комплексе с АГ связывают и активируют комплемент по классическому пути. Основным механизмом повреждения и гибели клеток-«мишеней» является комплементзависимый цитолиз. Иммунный цитолиз наблюдается при некоторых формах лекарственной аллергии (к пенициллину – анемия, к сульфаниламидам – агранулоцитоз и др.), переливании крови и аутоиммунных заболеваниях.

^ Реакции III типа (иммунных комплексов). В этом случае чужеродные АГ выводятся из , разрушаются при участии фагоцитирующих клеток. Захват иммунных комплексов фагоцитами опосредован Fc- и С3-рецепторами. В случаях дефекта фагоцитов иммунные комплексы накапливаются и циркулируют в кровяном русле. Их длительная персистенция приводит к активации комплемента по классическому пути и закреплению на Fc- и С3-рецепторах иммунокомпетентных клеток.

При активации комплемента в сыворотке и тканях накапливаются биологически активные пептиды – фракции С3а и С5а (анафилатоксины), способные вызывать расширение сосудов и нарушать проницаемость сосудистой стенки.

В реакции, индуцированные ЦИК, вовлекаются гранулоциты, тромбоциты, выделяющие биогенные амины, белки систем свертывания крови, кининообразования. При этом могут возникать повреждения самой разной локализации: кожи, суставов, артерий, почек, мышц и др. Болезни иммунных комплексов носят системный характер (например, сывороточная болезнь, СКВ), часто болезни иммунных комплексов развиваются при участии аутоАГ и аутоАТ, но роль пускового фактора может сыграть любой АГ инфекционной природы.

^ Реакции IV (клеточного) типа - реакции ГЗТ. В отличие от аллергических реакций первых трех типов, они х-ся не только более поздним проявлением, но и принципиально иными механизмами. В основе реакции ГЗТ лежит не гуморальный, а клеточный иммунный ответ.

^ Лабораторная диагностика аллергии проводится с учетом механизмов. Для этого пытаются определить преимущественный тип аллергии, а также определить аллерген.

Для этого при реакциях анафилактического типа ставят кожно-аллергические пробы с аллергенами из стандартных наборов: пылевых, пыльцовых, пищевых, лекарственных и др. На месте введения через 20–30 мин возникает покраснение, может образоваться волдырь. Выраженность кожной реакции зависит от степени сенсибилизации организма. Лабораторная диагностика при реакциях I типа основывается на выявлении АТ, относящихся к классу IgE, фиксированных на клетках (базофилах, тучных клетках) и содержащихся в сыворотке.

При аллергических реакциях II типа основные методы лабораторной диагностики применяются с целью выявления в сыворотке крови антиэритроцитарных, антилейкоцитарных и антитромбоцитарных АТ, оказывающих цитолитическое действие в присутствии комплемента на соответствующие клетки-«мишени».

При аллергических реакциях III типа основное внимание уделяется методам выявления ЦИК в крови или фиксированных в тканях органа-«мишени».

19. Гиперчувствительность замедленного типа, природа, формы проявления, методы диагностики.

Иммунный ответ  – это механизм защиты, но в ряде случаев он м.б. причиной патологических процессов. Как правило, это происходит при повторном контакте АГ с , ранее сенсибилизированным этим АГ. Такой антиген, способный вызвать сенсибилизацию организма и индуцировать в нем аллергическую реакцию, называют АЛЛЕРГЕНОМ.

^ Реакции IV (клеточного) типа – реакции ГЗТ. В отличие от аллергических реакций первых трех типов, они х-ся не только более поздним проявлением, но и принципиально иными механизмами. В основе реакции ГЗТ лежит не гуморальный, а клеточный иммунный ответ.

Аллергия клеточного типа развивается при многих инфекциях: туберкулезе, бруцеллезе, микозах и др. Сенсибилизацию клеточного типа могут вызывать живые вакцины, например вакцина БЦЖ. Сенсибилизация при этом связана с преимущественной пролиферацией Т-лимфоцитов, несущих специфические для данного аллергена распознающие рецепторы. После этого в организме надолго сохраняется размножившийся клон сенсибилизированных Т-лимфоцитов, который вступает в реакцию с АГ при повторном его попадании. Специфическая активация Т-лимфоцита индуцируется реакцией антигена с антигенраспознающими рецепторами на его мембране. Основным следствием такого взаимодействия является активация Т-эффекторов реакции ГЗТ с усилением выработки и секреции лимфокинов. Различают лимфокины, активирующие другие лимфоциты или макрофаги (к ним относится ряд факторов хемотаксиса, угнетения миграции макрофагов, активации макрофагов, γ-интерферон). Кроме того, лимфоциты секретируют цитотоксины, повреждающие разные клетки-«мишени».

В реакциях типа ГЗТ участвуют: Т-эффекторы, продуцирующие лимфокины; мобилизованные ими макрофаги, продуцирующие и секретирующие медиаторы-монокины; Т-киллеры – цитотоксические клетки-эффекторы, способные убивать клетки-«мишени», несущие на мембране специфические антигенные эпитопы.

Примером аллергической реакции клеточного типа может служить кожная проба на внутрикожное введение аллергена (туберкулина) в специфически сенсибилизированный (инфицированный или вакцинированный) организм. На месте введения аллергена образуется мононуклеарный инфильтрат, величина которого зависит от степени сенсибилизации и достигает максимума через 24-48 ч. Иммунопатогенетическая роль этих аллергических реакций особенно велика при некоторых хронических инфекциях и аутоиммунных заболеваниях.

^ Лабораторная диагностика. Для изучения клеточно-опосредованной сенсибилизации при аллергии IV типа используют кожные пробы с предполагаемыми аллергенами, результаты которых учитывают через 24–48ч, а также используют ряд тестов: РБТЛ, РТММ.

20. Иммунодефицитные состояния, классификация. Роль инфекции в развитии иммунодефицитов человека.

^ ИММУНОДЕФИЦИТНЫЕ СОСТОЯНИЯ – это нарушения иммунного статуса и способности к нормальному иммунному ответу на разные АГ, обусловленые дефектами одного или нескольких звеньев иммунной системы.

КЛАССИФИКАЦИЯ:

^ 1) Иммунодефициты подразделяют на врожденные и приобретенные. Врожденные (первичные) часто связаны с нарушением развития иммунной системы в ОГ, с нарушением пролиферации и дифференциации иммунокомпетентных .

^ Приобретенные (вторичные) – вследствие нарушения регуляции, после инфекций, травм, лечебных воздействий и др причин.

2) По дефектному ЗВЕНУ иммунной системы. Чаще встречаются преимущественные дефекты либо Т-, либо В-системы. Наиболее тяжелые – комбинированные дефекты Т- и В-систем иммунитета. Пример врожденного дефекта Т-системы – синдром аплазии тимуса.

Дефекты В-системы выявляются как синдромы гипо– или агаммаглобулинемии, причем в сыворотке могут ↓ все классы Ig, либо избирательно – 1-2 класса. Чаще – избирательная недостаточность SIgA, что приводит к нарушению местной защиты слизистых оболочек.

Для некоторых иммунодефицитных состояний характерна высокая избирательность дефекта. Например, СПИД возбудитель – HIV – избирательно поражает только Т-хелперы, но этот дефект отражается и на клеточных, и на гуморальных механизмах защиты организма, так как Т-хелперы являются одной из иммунорегуляторных субпопуляций Т-лимфоцитов.

Нужно учитывать, что один и тот же синдром м.б. следствием дефекта РАЗНЫХ ЗВЕНЬЕВ иммунной системы. Например, гипогаммаглобулинемия м.б. вызвана дефектом В-лимфоцитов, дефект антигенпрезентирующей функции макрофагов или дефектом Т-хелперов.

^ 3) По ПРИЧИНАМ ВОЗНИКНОВЕНИЯ иммунодефицитов. Врождённые иммунодефициты выявляются в основном у детей первых месяцев жизни, которые редко доживают до года без лечения.

Чаще встречаются приобретенные иммунодефициты инфекционной природы – вследствие размножения возбудителей в  иммунной системы, что приводит к разрушению или нарушению функций этих . Например, В! СПИДа репродуцируется в Т-хелперах, В! инфекционного мононуклеоза Эпстайна–Барра поражает В-лимфоциты. Инфицированные клетки разрушаются под действием самого возбудителя, его компонентов или продуктов (токсинов, ферментов), а также в результате специфической иммунной реакции организма, направленной против АГ мк в  мбне.

Большую группу составляют иммунодефициты, которые развиваются при нарушении иммунорегуляции. Даже сравнительно небольшое нарушение соотношений регуляторных субпопуляций Т-хелперов и Т-супрессоров может вывести иммунную систему из строя. Временное ↑ доли Т-супрессоров и повышение их функциональной активности при большинстве инфекций – нормальная иммунорегуляторная реакция, но активация Т-супрессоров часто приобретает стойкий характер и не поддается обратному развитию.

Часто причиной вторичных иммунодефицитных состояний являются метаболические или гормональные нарушения (при диабете, ожирении, атеросклерозе, уремии, истощении), иммунопролиферативные заболевания, а также применение иммуносупрессоров (при лечении опухолей или иммунопатологических процессов).

Чаще всего иммунодефициты приводят к возникновению ОППОРТУНИСТИЧЕСКИХ ИНФЕКЦИЙ, вызванных условно-патогенными мк. На фоне преимущественных дефектов В-звена иммунитета преобладают бактериальные (стафилококковые, стрептококковые и др.) инфекции. На фоне преимущественных дефектов клеточного иммунитета (Т-звена, макрофагов) проявляются в основном вирусные инфекции (герпес, ЦМВ и др.), кандидозы, микобактериозы и др.

При иммунодефицитах нарушается и противоопухолевый надзор  частые опухоли (саркома Капоши у больных СПИДом). Иммунодефициты могут проявляться также в виде аллергических и аутоиммунных заболеваний.

Для лабораторной диагностики иммунодефицитов состояний проводится поэтапная оценка иммунного статуса организма с целью выявления уровня дефекта и уточнения дефектного звена.

21. Оценки иммунного статуса организма человека (клинико-лабораторные методы ).

Оценка иммунного статуса  начинается с ^ ОРИЕНТИРОВОЧНОГО КЛИНИЧЕСКОГО (ПЕРВОГО) ЭТАПА – собирают и оценивают иммунологический анамнез: частоту инфекционных заболеваний, характер и выраженность их течения, наличие очагов хрон инфекции. Оцениваются результаты клинического анализа крови: содержание гранулоцитов, моноцитов, лимфоцитов. С помощью бактериологических, вирусологических и серологических исследований выявляется бактерио- или вирусоносительство.

На ^ ВТОРОМ ЭТАПЕ В иммунологической ЛАБОРАТОРИИ проводится исследование крови с использованием иммунологических тестов 1-го и 2-го уровней.

Тесты 1-го уровня позволяют выявить грубые нарушения со стороны иммунной системы, в крови определяют процентное содержание и абсолютное кол-во Т- и В-лимфоцитов.

Для подсчета Т-ЛИМФОЦИТОВ используют реакцию розеткообразования с эритроцитами барана (Е-РОК). У здоровых людей количество Т-лимфоцитов (Е-РОК) среди всех лимфоцитов периферической крови составляет 40–70%. Более точные методы – выявление Т-лимфоцитов с помощью специфических анти-Т-сывороток (например, с использованием меченых моноклональных АТ в иммунофлюоресцентном тесте).

Тесты для количественного подсчета В-ЛИМФОЦИТОВ основаны на обнаружении некоторых поверхностных маркеров, к/х нет на Т-, но есть на В-лимфоцитах (поверхностных Ig, С3- рецепторов, специфических В-АГ). Количество В-лимфоцитов определяется по наличию на них рецепторов к СЗ-компоненту комплемента методом ЕАС–розеткообразующих клеток (ЕАС-РОК), которое в норме составляет 10–30% общего числа лимфоцитов.

Для определения концентрации ^ СЫВОРОТОЧНЫХ ИММУНОГЛОБУЛИНОВ IgM, IgG и IgA (по Манчини) испольуется реакция преципитации в геле (тест иммунодиффузии) между АТ исследуемой сыворотки и АТ к IgM, IgG и IgA. Уровень сывороточных Ig отражает состояние В-системы иммунитета.

Для оценки факторов неспецифической защиты определяют ^ ФАГОЦИТАРНУЮ АКТИВНОСТЬ НЕЙТРОФИЛОВ крови. О фагоцитарной активности судят по проценту фагоцитирующих клеток и среднему количеству микробных частиц, поглощенных одним лейкоцитом.

Тесты 2-го уровня позволяют провести более тщательный анализ иммунного статуса организма человека, позволяют уточнить характер дефекта, выявленного на предыдущем этапе с помощью ориентировочных тестов. К ним относят определение субпопуляций регуляторных Т-лимфоцитов (Т-хелперы / Т-супрессоры), оценку функциональной активности регуляторных и эффекторных субпопуляций Т-лимфоцитов и др. Большинство тестов 2-го уровня весьма трудоемки, результаты их могут быть получены не ранее чем через 3–7 сут.

22. Реакция агглютинации. Механизм, практическое использование.

Агглютинацией называется склеивание бактерий при действии на них специфических антител в присутствии электролита. Ее используют: 1) для определения вида и серовара выделенных бактерий (СЕРОТИПАЖ), 2) для обнаружения антител в сыворотке крови больного (СЕРОДИАГНОСТИКА).

Для постановки реакции агглютинации (РА) необходимы три компонента: Аг (агглютиноген), Ат (агглютинин) и электролит (изотонический раствор натрия хлорида). В качестве Аг в РА применяют взвеси живых и убитых бактерий (ДИАГНОСТИКУМЫ).

Для получения агглютинирующих сывороток обычно иммунизируют кроликов. При этом им 5–7 раз подкожно, а затем внутривенно с интервалами 2–7 суток в возрастающих дозах вводят взвесь убитых, а в конце – 2–3 раза живых бактерий. Через неделю после иммунизации определяют титр сыворотки, или максимальное ее разведение, которое агглютинирует гомологичный микроорганизм. Если титр сыворотки недостаточен, иммунизацию продолжают. Полученные таким образом агглютинирующие сыворотки называются неадсорбированными, поскольку содержат групповые агглютинины и могут в небольших разведениях склеивать родственные в антигенном отношении бактерии. Поэтому для опред-я вида б!! надо ставить развернутую реакцию с сывороткой, разведенной от 1:100 до ее титра. Сыворотка соответствует мк-му в том случае, если как минимум агглютинирует его до половины титра.

Более достоверные результаты при определении вида или серовара бактерий дают адсорбированные (монорецепторные или типоспецифические) сыворотки, которые не имеют групповых агглютининов, вследствие чего нет необходимости разводить их. Реакцию агглютинации в них ставят на предметном стекле.

^ Ориентировочная, или пластинчатая, реакция агглютинации. Ориентировочную РА выполняют перед постановкой развернутой реакции для того, чтобы отобрать на среде агглютинирующиеся в сыворотке колонии бактерий (культуры) и исключить из дальнейших исследований неагглютинирующиеся. Ставят ее при комнатной температуре на предметном стекле. Для этого на его поверхность пастеровской пипеткой раздельно наносят 2–3 капли различных сывороток в разведениях 1:10–1:20 и каплю 0,5% раствора NaCl (контроль РА). В каждую каплю за исключением контрольной вносят подозрительные колонии (петлю культуры) и тщательно перемешивают до равномерного помутнения.

Результаты реакции учитывают через несколько минут невооруженным глазом. При положительной реакции в каплях с сывороткой появляются крупные или мелкие хлопья, при отрицательной – жидкость остается равномерно мутной.

^ Развернутая реакция агглютинации для идентификации бактерий.

Ставят ее следующим образом. В агглютинационные пробирки предварительно разливают по 1 мл изотонического раствора натрия хлорида. В первую из них доливают 1 мл сыворотки, разведенной 1:100, и, смешав ее, 1 мл переносят во вторую, из второй – в третью пробирку и т. д. Получив двукратные разведения сывороток (от 1:100 до 1:1600 и более), вносят в них по 1–2 капли двухмиллиардной взвеси бактерий. Контролями служат изотонический раствор натрия хлорида с антигеном и исследуемая сыворотка без него. Пробирки энергично встряхивают и помещают на 2 ч в термостат при температуре 37С, затем ведут предварительный учет, начиная с контрольных. Отсутствие агглютинации в контрольных пробирках и наличие взвешенных хлопьев в двух–трех и более пробирках опыта свидетельствуют о положительной реакции. Окончательные результаты учитывают через 18–20ч, выдерживая штатив с пробирками при комнатной температуре. Интенсивность реакции выражается плюсами: «++++» – сыворотка прозрачная, с хлопьевидным осадком склеившихся бактерий на дне пробирки; «+++» «++» и «+» – убывающие просветления с уменьшением бактериального осадка.

^ Реакция агглютинации для серодиагностики инфекционных болезней.

При использовании РА для выявления в сыворотке больных антител к соответствующему патогенному микробу или, как кратко говорят, в целях серодиагностики берут 5 мл крови, получают сыворотку и разводят ее изотоническим раствором натрия хлорида от 1:50–1:100 до 1:800–1:1600, так как в более низких ее титрах могут находиться нормальные агглютинины, имеющиеся у здоровых людей или у больных с другим диагнозом.

В качестве Аг в этой реакции используют заведомо известные взвеси убитых мк (ДИАГНОСТИКУМЫ), с которыми безопасно работать

РА для серодиагностики ставится и учитывается так же, как и развернутая РА для определения вида бактерий. Диагностическое значение имеют титры 1:100–1:200 и выше.

Более достоверные результаты дает выявление нарастания титра антител в парных сыворотках, полученных от больного в начале заболевания и спустя 3–5 суток и более, когда титр агглютининов повышается под воздействием находящегося в организме патогенного микроба.

^ Реакция непрямой гемагглютинации (РНГА). Ставится для обнаружения полисахаридов, белков, экстрактов бактерий, микоплазм, риккетсий и вирусов, иммунные комплексы которых с агглютининами в обычных классических РА увидеть не удается, или же для выявления антител в сыворотках больных к этим высокодисперсным веществам и мельчайшим микроорганизмам.

^ РНГА для серодиагностики инфекционных болезней. Используя РНГА для обнаружения антител в сыворотках больных, готовят ЭРИТРОЦИТАРНЫЕ АНТИГЕННЫЕ ДИАГНОСТИКУМЫ. Для этого эритроциты обрабатывают 15 мин раствором танина в разведении 1:20 000–1:200 000, что придает им устойчивость и повышает адсорбционную способность. Затем их смешивают с известным антигеном и инкубируют в течение 2 ч при температуре 37С.. Сенсибилизированные антигеном эритроциты 2–3 раза отмывают изотоническим раствором натрия хлорида и добавляют к сыворотке, разведенной и разлитой в лунки панелей. Контролем служат взвеси интактных и нагруженных антигеном эритроцитов, которые вносят в сыворотки, дающие заведомо положительную и отрицательную реакции.

Результаты реакции учитывают через 2 ч после инкубации в термостате и оценивают плюсами: «++++» – эритроциты покрывают лунку в виде зонтика с неровными краями; «–» – скопление эритроцитов в виде «пуговицы»

23. Реакция преципитации. Её модификации.

^ Реакцией преципитации (РП) называется осаждение из раствора Аг (преципитиногена) при воздействии на него иммунной сыворотки (преципитина) и электролита. Посредством РП можно выявить антиген в разведениях 1:100 000 и даже 1:1 000 000, т. е. в таких малых количествах, которые не обнаруживаются химическим путем.

Преципитиногены представляют собой ультрамикроскопические частицы белково–ПС прир: экстракты из мк, органов и тк, пат материала; продукты распада бактериальной клетки, их лизаты, фильтраты. Преципитиногены обладают термоустойчивостью, поэтому для их получения материал подвергается кипячению. В РП используются жидкие прозрачные Аг.

Преципитирующие сыворотки обычно получают гипериммунизацией кроликов циклами в течение нескольких месяцев, вводя им бактериальные взвеси, фильтраты бульонных культур, аутолизаты, солевые экстракты микроорганизмов, сывороточные белки.

^ Постановка РП Асколи. В узкую пробирку с небольшим кол-вом неразведенной преципитирующей сыворотки, держа ее в наклонном положении, пипеткой медленно по стенке наслаивается такой же объем Аг. Чтобы не смешать две жидкости, пробирку осторожно ставят вертикально. При положительной реакции в пробирке на границе между сывороткой и исследуемым экстрактом через 5–10 мин появляется серовато–белое кольцо. Постановка реакции обязательно сопровождается контролями сыворотки и антигена.

Реакция Асколи применяется для идентификации сибиреязвенного, туляремийного, чумного Аг. Она нашла также применение в судебной медицине для опред-я видовой принадлежности белка, в частности кровяных пятен, в санитарной практике при выявлении фальсификации мясных, рыбных, мучных изделий, примесей в молоке. Недостатком этой РП является нестойкость преципитата (кольца), который исчезает даже при легком встряхивании. Кроме того, с ее помощью нельзя определить количественный состав Аг, участвующих в формировании преципитата.

^ Реакция преципитации Оухтерлони. Реакцию ставят на чашках Петри в лунках агарового геля. В качестве геля используют хорошо отмытый прозрачный агар. Аг и сыворотки вносятся в агаровый гель так, чтобы лунки, содержащие их, находились на определенном расстоянии. Диффундируя навстречу друг другу и соединяясь друг с другом, антитело и антиген образуют через 24–48 ч иммунный комплекс в виде белой полосы. При наличии сложного по составу преципитиногена возникает несколько полос. При этом полосы серологически родственных антигенов сливаются воедино, а полосы разнородных перекрещиваются, что позволяет определить детали антигенной структуры исследуемых веществ. Широко используется для диагностики заболеваний, вызываемых вирусами и бактериями, продуцирующими экзотоксины.

24. Реакция связывания комплемента. Механизм и практическое использование.

^ Реакция связывания комплемента (РСК) – сложная двухэтапная серологическая реакция. В ней используют пять ингредиентов, составляющих две системы: антиген, антитело, комплемент (первая система); эритроциты барана, сенсибилизированные (обработанные) гемолитической сывороткой, содержащей специфические к ним антитела (вторая, или индикаторная, гемсистема). При этом взаимодействие антитела с антигеном на первом этапе реакции приводит к образованию иммунного комплекса, который адсорбирует комплемент, но визуально обнаружить это невозможно. В качестве индикатора связывания комплемента на комплексе антиген–антитело на втором этапе используют гемсистему, которая, являясь иммунным комплексом, тоже способна адсорбировать его. В конечном итоге возможны два варианта результата реакции. Если антитело и антиген соответствуют друг другу и комплемент адсорбируется образовавшимся комплексом, лизиса эритроцитов гемсистемы не произойдет. При несоответствии антитела антигену, и наоборот, комплемент, оставаясь свободным, присоединится к гемсистеме и вызовет гемолиз.

Как и другие серологические реакции, РСК можно использовать для выявления специфических антител по известному антигену или для определения антигена по известным антителам.

^ Общая характеристика ингредиентов РСК.

ИССЛЕДУЕМАЯ СЫВОРОТКА перед постановкой реакции прогревается на водяной бане 30 мин для инактивации ее собственного комплемента и разводится начиная с 1:5.

АНТИГЕНОМ могут быть культуры бактерий, их лизаты, вирусы и вирус–содержащие материалы, экстракты патологически измененных органов и тканевые липиды.

КОМПЛЕМЕНТ – сыворотка морских свинок, полученная в день опыта. В настоящее время используется производственный сухой комплемент.

ГЕМОЛИТИЧЕСКАЯ СИСТЕМА состоит из смешанных в равных объемах гемолитической сыворотки и 3% взвеси эритроцитов барана по осадку. Для сенсибилизации эритроцитов гемолизинами смесь выдерживают в термостате при температуре 37С в течение 30 мин.

^ Постановка основного опыта РСК. В 1 пробирку вносят СЫВОРОТКУ, АНТИГЕН И КОМПЛЕМЕНТ, во вторую – сыворотку, комплемент и вместо антигена изотонический раствор натрия хлорида (КОНТРОЛЬ СЫВОРОТКИ), в третью – антиген, комплемент и тот же раствор натрия хлорида (КОНТРОЛЬ АНТИГЕНА). Пробирки ставят в термостат при температуре 37С на 1ч. Одновременно готовят гемолитическую систему, которую затем добавляют во все три пробирки после извлечения штатива из термостата. Смешав гемсистему с ингредиентами трех пробирок, последние вновь ставят в термостат на 1 ч, и спустя это время учитывают результаты РСК.

При учете РСК интенсивность реакции обозначается плюсами: «++++»– резко положительная реакция с полной задержкой гемолиза, жидкость в пробирке бесцветная, все эритроциты осели на дно; «+++», «++» –положительная реакция, отличается нарастанием окраски жидкости вследствие гемолиза и уменьшения количества эритроцитов в осадке; «+» – слабоположительная реакция, жидкость интенсивно окрашена, на дне пробирки незначительное количество эритроцитов. Отрицательная реакция обозначается знаком «–», при этом наблюдается полный гемолиз, жидкость в пробирке имеет интенсивно–розовую окраску («лаковая кровь»).

РСК – весьма сложная, но очень чувствительная специфическая реакция. Широко применяется в диагностике сифилиса, хронической формы гонореи, коклюша, актиномикоза, всех риккетсиозов и вирусных инфекций.

25. Реакция нейтрализации (реакция нейтрализации токсина антитоксином; реакция вирусной нейтрализации на животных, эмбрионах и клеточных культурах. Механизм и практическое использование).

Идентифицировать вирус по характеру его действия на монослой культуры клеток, которые он разрушает или вызывает в них разного рода структурные изменения, очень трудно, и поэтому прибегают к постановке реакции нейтрализации (РН) вирусов заведомо известными вируснейтрализующими сыворотками. С этой целью полученный от больного вирус накапливают в культуре клеток и различные его разведения смешивают с неразведенной противовирусной сывороткой или, наоборот, постоянную дозу вируса добавляют к различным разведениям иммунной сыворотки. Смеси инкубируют в термостате. После этого смесями вируса и сыворотки заражают культуру клеток и о нейтрализующей силе ее антител судят по отсутствию цитопатического действия на клетки Смесью вирусов и сывороток можно заражать куриные эмбрионы или чувствительных животных. В таких случаях нейтрализующую активность антител определяют по предотвращению развития патологических изменений на хорионаллантоисной оболочке; нейтрализации вирусных гемагглютининов в жидкостях эмбриона, устранению летального действия вируса на животных

Подобным образом с помощью РН идентифицируются вирусы, выделенные из материала больных при заражении им куриных эмбрионов и животных. В таких случаях к вируснейтрализующим сывороткам прибавляют вируссодержащие жидкости эмбрионов и взвеси пораженных органов животных. После определенного времени инкубации смесями инфицируют культуры клеток, куриные эмбрионы и животных.

В серодиагностике вирусных инфекций РН определяют вирус–нейтрализующие антитела в сыворотке больных по известному вирусу. Ставят ее в динамике с парными сыворотками, одну из которых берут в разгаре заболевания, а вторую – спустя 2–3 недели, и по четырехкратному нарастанию титра антител в этой последней подтверждают диагноз.

26. Иммуноферментный анализ. Механизм и практическое использование.

Метод был разработан в начале 70-х гг независимо друг от друга тремя группами учёных. Метод напоминает РИА, но в его основу положено маркирование Аг или Ат, вступающего в реакцию, ферментом. Взд метки с субстратом обычно сопровождается изменением окраски среды. В настоящее время созданы многочисленные модификации этого метода, но наибольшее распространение получил гетерогенный ИФА на твёрдой фазе (твердофазный). Различают:

ПРЯМОЙ ТВЕРДОФАЗНЫЙ ИФА. В этом случае:

сыворотку с Ат инкубируют с Аг, фиксированным на твёрдом субстрате (чаще всего это пластиковая микропланшетка).

Ат, не связавшие Аг, удаляют многократным промыванием.

Вносят меченную ферментом сыворотку к Ат, связавшим Аг.

Определяют ко-во фермента–маркёра, связавшегося с Ат.

^ КОНКУРЕНТНЫЙ ТВЕРДОФАЗНЫЙ ИФА.

Вносят сыворотку. Если в ней есть специфические Ат, то они связываются с Аг, фиксированном на твёрдом субстрате. Если специфических Ат нет, то Аг оказывается не связанным.

При добавлении специфических к фиксированному Аг Антител в первом случае им будет не с чем взаимодействовать (большинство Аг уже связаны)  содержание маркёра низкое. Во втором случае специфические Ат будут связываться с Аг и при отмывании они не будут смываться  высокое содержание маркёра.

Аналогично м.б. фиксированы АНТИТЕЛА, и различные фирмы выпускают именно планшеты с уже фиксированными Ат.

По сравнению с классическими методами выявления Аг этот метод позволяет непосредственно регистрировать их взаимодействие с Ат, а не вторичные проявления (агглютинацию, преципитацию или гемолиз). Метод очень ЧУВСТВИТЕЛЕН (достаточно концентрации 1нг/мл).

Определяют: Хламидии, клостридии, ВИЧ и др.

27. Реакция торможения гемагглютинации. Механизм и практическое использование.

Многие вирусы обладают способностью агглютинировать эритроциты строго определенных видов млекопитающих и птиц. Так, вирусы гриппа и эпидемического паротита агглютинируют эритроциты кур, морских свинок, человека, а аденовирусы – эритроциты крыс, мышей. В связи с этим для их обнаружения в материале больных или культурах клеток, эмбрионов и животных ставят реакцию гемагглютинации (РГА). Для этого в лунках планшетов готовят двукратно возрастающие разведения вируссодержащих материалов и жидкостей, добавляя к ним отмытые изотоническим раствором взвеси NaCl эритроцитов. Для контроля спонтанной агглютинации эритроциты смешивают ещё с равным объемом изотонического раствора NaCl. Смеси инкубируют в термостате при температуре 37°С или при комнатной температуре.

Результаты РГА учитывают по характеру агглютинации эритроцитов через 30–60 мин, когда они обычно полностью осаждаются в контроле. Положительная реакция обозначается плюсами. «++++» –осадок в виде «зонтика», «+++» – осадок с просветами, «++» – осадок с большими просветами, «+» –хлопьевидный осадок, окруженный зоной скомкованных эритроцитов, и «–» – такой же резко очерченный осадок эритроцитов в виде «пуговицы», как и в контроле

Являясь группоспецифической, РГА не дает возможности определить видовую принадлежность вирусов. Их идентифицируют с помощью реакции торможения гемагглютинации (РТГА). Для ее постановки используют заведомо известные иммунные противовирусные сыворотки, которые в двукратно снижающихся концентрациях разводят в изотоническом растворе натрия хлорида и разливают по лункам. К каждому их разведению добавляют равное количество вируссодержащей жидкости. Контролем является взвесь вируса в изотоническом растворе натрия хлорида. Планшеты со смесью сывороток и вируса выдерживают в термостате 30 мин или при комнатной температуре 2 ч, затем в каждую из них добавляют взвесь эритроцитов. Спустя 30 мин определяют титр вируснейтрализующей сыворотки (т.е. максимальное ее разведение), вызвавшей задержку агглютинации эритроцитов.

Используют РТГА в серологической диагностике вирусных болезней, в частности гриппа и аденовирусных инфекций. Ставить ее лучше так же, как и РН, с парными сыворотками. Четырехкратное нарастание титра антител во второй сыворотке подтверждает предполагаемый диагноз

28. Реакции фагоцитоза. Практическое использование реакции фагоцитоза при оценке иммунного статуса.

Фагоцитоз осущ-ся микрофагами и макрофагами. Стадии фагоцитоза: приближение, прилипание, погружение, переваривание.

Оценка функциональной активности фагоцитирующих клеток.

Колич. оценку фагоцитарной активности гранулоцитов и моноцитов производят в цельной крови, в лейкоцитарной взвеси или в обогащенных фракциях фагоцитирующих клеток. В качестве стандартных объектов фагоцитоза используют монодисперсные частицы латекса диаметром 1,0-2,0 мкм, суспензию убитых нагреванием бактерий или дрожжеподобных грибов.

Фагоциты смешивают с фагоцитируемым материалом в соотношении 1:10 или 1:100 и инкубируют при 37°С в течение 30 мин при постоянном перемешивании. Затем пробирки центрифугируют и осадок ресуспензируют в капле сыворотки крови для приготовления мазка. В мазках, фиксированных краской Май-Чрюнвальда и окрашенных по Романовскому-Гимзе, подсчитывают процент фагоцитирующих клеток (ФП – фагоцитарный показатель) и кол-во поглощенных частиц на 1 клетку (ФЧ – фагоцитарное число).

У здорового человека ФП=40-80%, ФЧ=1-5.

29. Молекулярно-генетические методы обнаружения возбудителей инфекции в организме (ДНК и РНК зондирование, полимеразная цепная реакция).

В большей степени методы индикации НК нашли применение в диагностике вирусных инфекций, хотя существуют и спец системы для индикации некоторых прихотливых бактерий (легионелл, хламидий, энтерококков, микобактерий и др).

Наиболее распространены МЕТОДЫ ГИБРИДИЗАЦИИ ДНК И РНК. Принцип: ДНК (и РНК) способны специфически связываться (гибридизироваться) с комплементарными фрагментами искусственно созданных нитей ДНК (РНК), меченых изотопами или ферментами (пероксидаза, ЩФ…). Затем образцы исследуют методом ИФА.

ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ. Была предложена в 1983г. Принцип: многократное образование копий (амплификация) определённого участка ДНК с помощью ДНК-полимеразы. ЭТАПЫ:

ТЕРМИЧЕСКОЕ РАЗДЕЛЕНИЕ 2-хнитевой ДНК на отдельные цепочки (93-95°С в течение 30 секунд).

ОХЛАЖДЕНИЕ СРЕДЫ И ВНЕСЕНИЕ ПРАЙМЕРОВ, комплементарных нуклеотидным последовательностям обоих цепочек. Используют синтетические праймеры – олигонуклеиды из 10-20 НКт, взаимодействующих с концами отдельных нитей исходной ДНК. Точнее добавляют 2 праймера (комплиментарны). Взаимодействие праймеров называют ОТЖИГОМ (реакция проходит за 20-60 с при 50-65°С).

Вносят СПЕЦ ТЕРМОСТАБИЛЬНУЮ ПОЛИМЕРАЗУ (оптимум 70°С), к/я синтезирует вторичные копии цепей ДНК (ампликоны).

Полученные 2-хнитчатые ДНК снова подогревают, остужают, вносят праймеры и т.д.

Т.к. полимераза устойчива к воздействию t°С, то нет необходимости постоянно её добавлять. После 30-80 циклов проводят идентификацию ДНК методом электрофореза. Подсчитано, что за 30-40 циклов из 1 матрицы образуется 100.000.000 (100 млн) ампликонов. Для подтверждения принадлежности ДНК возбудителю молекулы можно подвергнуть рестрикции специфическими эндонуклеазами или провести ДНК-гибридизацию. ПЦР – оч чувствительный метод, теоретически достаточно иметь в среде лишь 1 молекулу ДНК.

Для ДИАГНОСТИКИ ИНФ ЗАБ-Й маркёром возбудителя явл его геном. Для амплификации отбирают какой-нибудь УНИКАЛЬНЫЙ ген, наиболее отличающий его от других патогенов.

30. Биопрепараты для создания активного иммунитета. Вакцины, анатоксины. Принципы их получения.

Препараты для иммунопрофилактики и иммунотерапии инфекционных заболеваний делятся на:

вакцины и анатоксины – для индукции специфического иммунного ответа с формированием активного противоинфекционного иммунитета за счет мобилизации механизмов иммунологической памяти;

иммунные сыворотки и Ig – содержат готовые специфические АТ (Ig), введение которых в  приводит к немедленному приобретению пассивного гуморального иммунитета, способного защитить организм от интоксикации или инфекции.

ВАКЦИНЫ (Э. Дженнер, Л. Пастер) – биопрепараты, предназначенные для создания активного искусственного иммунитета. Делятся на живые, убитые, химические, анатоксины и ассоциированные. Готовят т/же аутовакцины – из штаммов мк, выделенных непосредственно из  чка.

^ ЖИВЫЕ ВАКЦИНЫ создают напряженный иммунитет, сходный с постинфекционным. Готовятся из АТТЕНУИРОВАННЫХ штаммов (т.е. вирулентные свойства утрачены, но при введении в  способны прижиться и вызвать выработку ВСЕХ ВИДОВ иммунитета). В большинстве случаев достаточно однократной вакцинации живой вакциной, т.к. вакцинный штамм может размножаться и персистировать в . Применение живых вакцин опасно для людей (особенно детей) с врожденными или приобретенными иммунодефицитными состояниями → тяжелые инфекционные осложнения. Для получения используют следующие методы:

селекционный метод, направленный на выращивание мк в неблагоприятных условиях отбор микробов со ↓ вирулентностью – классический метод получения живых вакцин (Пастер – сиб язва).

Адаптация мк к  невосприимчивого Ж! или пассирование через ткани и органы, к/е не являются входными воротами для данного мк.

Отбор мутантных штаммов со ↓ вирулентностью, выделенных из природы.

Методы генной инженерии.

^ УБИТЫЕ ВАКЦИНЫ готовят из мк, обладающих максимально выраженной иммуногенностью. Их выращивают (на биопредприятиях), затем инактивируют t°С (55-60° в течение 1часа), УФ или хим в-вами (формалин, фенол, спирт и др) в условиях, исключающих денатурацию антигенов. Для профилактики – брюшного тифа, паратифов А и В, коклюша, бруцеллёза, лептоспироза… Для лечения – при вялотекущих и хронических инфекциях: бруцеллёз, туляремия, дизентерия, гоноррея, коклюш… Убитые вакциины создают ненапряжённый иммунитет.

Аттенуированный или убитый возбудитель – это множество различных АГ детерминант, но индуцировать защитный иммунитет могут немногие из них  очистить вакцинный препарат от токсичных или аллергизирующих компонентов. Выделение из Б! АГ компонентов позволило получить вакцины второго поколения – ХИМИЧЕСКИЕ. По сравнению с др вакцинами они менее реактогенны. Аналогами Б! хим вакцин являются вирусные субъединичные (расщепленные) вакцины, содержащие лишь некоторые наиболее иммуногенные компоненты вирионов (противогриппозная вакцина, включающая гемагглютинин и нейраминидазу). Субъединичные вакцины оказались наименее реактогенными, но и наименее иммуногенными.

Для ↑ ИММУНОГЕННОСТИ химических и субъединичных вакцин к ним добавляют разного рода адъюванты (adjuvans – помогающий, поддерживающий): гидрооксид алюминия, алюминиево-калиевые квасцы, фосфат алюминия и др. Те же адъюванты добавляют для повышения иммуногенности и к препаратам анатоксинов.

АНАТОКСИНЫ получают путем обработки токсинов формалином (0,3% раствор) при температуре 37°С в течение 30 дней. При этом токсин утрачивает ядовитость, но сохраняет способность индуцировать синтез АТ. Анатоксинами широко пользуются для выработки активного антитоксического иммунитета при специфической профилактике столбняка, дифтерии и других инфекций, возбудители которых продуцируют экзотоксины.

^ ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ:

получение в чистом виде эпитопов и их связывание с молекулой-носителем (природные белки, синтетические полиэлектролиты).

Генноинженерные методы: определяют гены, контролирующие нужные АГ детерминанты, переносят в геном других мк и клонируют в них, добиваясь экспрессии этих генов в новых условиях.

На основе антиидиотипических антител.

Использование липосом для введения АГ. Благодаря их сходству с клеточными мембранами они не токсичны для , заключенное в них вещество защищено от растворения в крови и они могут адсорбироваться на клетках. Такие «липосомные» вакцины вызывали тысячекратное усиление иммунного ответа.

1   ...   7   8   9   10   11   12   13   14   ...   28

Похожие:

Рпга реакция прямой гемагглютиннации iconАлгоритм составления уравнения реакции нейтрализации на основе названия реагентов
Реакция нейтрализации – это реакция между кислотой и основанием, приводящая к образованию соли и воды

Рпга реакция прямой гемагглютиннации icon1. Воспаление типовой патологический процесс, эволюционно сформировавшийся,...
Чем более местно протекает эта реакция, тем благоприятнее для организма ее исходы

Рпга реакция прямой гемагглютиннации iconКакие из следующих утверждений верны?
Если расстояние от точки до прямой меньше 1, то и длина любой наклонной, проведенной из данной точки к прямой, меньше 1

Рпга реакция прямой гемагглютиннации iconБилет №1 1
Теорема о неподвижной точке отображения. Деление пополам площадей двух фигур одной прямой. Деление пополам площади фигуры прямой,...

Рпга реакция прямой гемагглютиннации icon§ Основная задача интегрального исчисления
Найти площадь фигуры, ограниченной снизу замкнутым промежутком оси абсцисс I = [a,b] (y= 0), слева – вертикальной прямой X = a, справа...

Рпга реакция прямой гемагглютиннации icon• Плоскостью называется поверхность, обладающая следующими свойствами:...
Плоскостью называется поверхность, обладающая следующими свойствами: а если две точки прямой принадлежат поверхности, то и каждая...

Рпга реакция прямой гемагглютиннации icon-
Кого Аллах направляет на прямой путь, того никто не сможет ввести в заблуждение. А кого Он оставляет, того никто не наставит на прямой...

Рпга реакция прямой гемагглютиннации icon-
Поистине, никто не введет в заблуждение того, кого Аллах наставит на прямой путь, и никто не наставит на прямой путь того, кого собьет...

Рпга реакция прямой гемагглютиннации iconТесты по общей иммунологии для студентов ?
Иммунная реакция организма, сопровождающаяся повреждением собственных тканей это

Рпга реакция прямой гемагглютиннации iconПрограмма курса «Общая и неорганическая химия»
Химический элемент. Простое и сложное химическое вещество. Количество вещества. Химическая реакция

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов