1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом




Название1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом
страница14/31
Дата публикации01.08.2013
Размер3.13 Mb.
ТипИсследование
zadocs.ru > Биология > Исследование
1   ...   10   11   12   13   14   15   16   17   ...   31

^ Механизмы возбудимости, автоматии и сокращений кардиомиоцитов

Как и в других возбудимых клетках возникновение мембранного потенциала кардиомиоцитов обусловлено избирательной проницаемостью их мембраны для ионов калия. Его величина у сократительных кардиомиоцитов составляет 80-90 мВ, а у клеток синоатриального узла 60-65 мВ. Возбуждение кардиомиоцитов проявляется генерацией потенциалов действия, которые имеют своеобразную форму. В них выделяются следующие фазы:

1. Фаза деполяризации

2. Фаза быстрой начальной реполяризации

3. Фаза замедленной реполяризации

4. Фаза быстрой конечной реполяризации (рис).

Длительность ПД кардиомиоцитов составляет 200-400 мсек. Это во много раз больше, чем у нейронов или скелетных миоцитов. Амплитуда ПД около 120 мВ. Фаза деполяризации связана с открыванием быстрых натриевых и кальциевых каналов мембраны, по которым эти ионы входят в цитоплазму. Фаза быстрой начальной реполяризации обусловлена инактивацией натриевых каналов и входом ионов хлора. Фаза замедленной инактивацией кальциевых каналов. Одновременно активируются калиевые каналы. Затем активируются все калиевые каналы и ионы калия выходят из кардиомиоцитов, развивается фаза быстрой конечной реполяризации.

Автоматия, т.е. генерация спонтанных ПД пейсмекерными клетками, обусловлена тем, что их мембранный потенциал не остается постоянным. В период диастолы в Р-клетках синоатриального узла происходит его медленное уменьшение. Это называется медленной диастолической деполяризацией МДД (рис). Когда ее величина достигает критического уровня, генерируется ПД, который по проводящей системе распространяется на все сердце. Возникает систола предсердий, а затем желудочков. Медленная диастолическая деполяризация связана с постепенным нарастанием натриевой проницаемости мембраны атипических кардиомиоцитов. Истинными пейсмекерами является лишь небольшая группа Р-клеток синоатриального узла. Остальные Р-клетки проводящей системы являются латентными водителями ритма. Пока спонтанные ПД поступают из синоатриального узла, латентные пейсмекеры подчиняются его ритму. Это называется усвоением ритма. Но как только проведение нарушается, в них начинают генерироваться собственные спонтанные ПД. Поэтому при некоторых заболеваниях возникает патологическая импульсация в клетках проводящей системы, миокарде предсердий и желудочков. Такие очаги автоматии называют эктопическими т.е. смещенными.

Сокращение кардиомиоцитов, как и других мышечных клеток является следствием генерации ПД. В них, как и скелетных миоцитах, имеется система трубочек саркоплазматического ретикулума, содержащих ионы кальция. При возникновении ПД эти ионы выходят из трубочек в саркоплазму. Начинается скольжение миофибрилл. Но в сокращении кардиомиоцитов принимают участие и ионы кальция, входящие в них в период генерации ПД. Они увеличивают длительность сокращения и обеспечивают пополнение запасов кальция в трубочках.

^ Соотношение возбуждения, возбудимости и сокращения сердца. Нарушения ритма и функций проводящей системы сердца.

В связи с тем, что сердечная мышца является функциональным синцитием, сердце отвечает на раздражение по закону "все или ничего". При исследовании возбудимости сердца в различные фазы сердечного цикла было установлено, что если нанести раздражение любой силы в период систолы, то его сокращения не возникает. Следовательно во время систолы сердце находится в фазе абсолютной рефрактерности. В период диастолы на пороговые раздражения сердце не реагирует. При нанесении сверхпорогового раздражения возникает его сокращение. Т.е. во время диастолы оно находится в фазе относительной рефрактерности. В начале общей паузы сердце находится в фазе экзальтации (рис). При сопоставлении фаз потенциала действия и возбудимости установлено, что фаза абсолютной рефрактерности совпадает с фазами деполяризации, быстрой начальной и замедленной реполяризации. Фазе относительной рефрактерности соответствует фаза быстрой конечной реполяризации. Продолжительность фазы абсолютной рефрактерности 0,25-0,3 сек, а относительной 0,03 сек. Благодаря большой длительности рефрактерных фаз сердце может сокращаться только в режиме одиночных сокращений.

В норме частота сердцебиений в покое зависит от возраста, пола, тренированности. У детей их частота больше, чем у взрослых. У женщин выше, чем у мужчин, а физически слабых людей больше, чем у тренированных. При определенных состояниях наблюдаются изменения ритма работы сердца - аритмии. Это нарушения правильности чередования сердечных сокращений. К физиологическим аритмиям относится дыхательная. Это зависимость частоты сердцебиений от фаз дыхания. На вдохе они урежаются, а на выдохе учащаются. Обычно дыхательная аритмия наблюдается в юношеском возрасте и у спортсменов. Она связана с колебаниями активности центров вагуса при дыхании.

Если на сердце, находящееся в фазе относительной рефрактерности, нанести сверхпороговое раздражение, то возникнет внеочередное сокращение - экстрасистола. Амплитуда экстрасистолы будет зависеть от того, в какой момент этой фазы нанесено раздражение. Чем оно ближе к концу относительной рефрактерности, тем больше ее величина. После экстрасистолы следует более длительный, чем обычно период покоя сердца. Он называется компенсаторной паузой. Она возникает вследствие того, что очередной потенциал действия, генерирующийся в синоатриальном узле, поступает к мышце сердца в период ее рефрактерности обусловленный экстрасистолой (рис). У человека экстрасистолы возникают вследствие поступлений внеочередных импульсов из эктопических очагов автоматии. Ими могут быть скопления Р-клеток в миокарде предсердий, атриовентрикулярном узле, пучке Гиса, волокнах Пуркинье желудочков. Поэтому выделяют предсердные, атриовентрикулярные и желудочковые экстрасистолы. При предсердных и атриовентрикулярных экстрасистолах возникает неполная компенсаторная пауза, которая немного длительнее обычного сердечного цикла. При желудочковых полная компенсаторная пауза. В последнем случае нарушается и ритм пульса. Экстрасистолы могут возникать у здоровых людей при эмоциональном напряжении, курении, злоупотреблении алкоголем. Но чаще это проявление патологических изменений в проводящей системе. В тяжелых случаях возникают множественные очаги возбуждения. Развивается фибрилляция предсердий и желудочков. Это асинхронные сокращения отдельных групп кардиомиоцитов. В результате фибрилляции желудочков наблюдаются тяжелые нарушения гемодинамики и смерть. Для выведения из этого состояния применяется дефибрилляция. Другая группа изменений проводящей системы - блокады. Это нарушения проведения возбуждения. При патологии сердечной мышцы наблюдаются синоаурикулярные, атриовентрикулярные блокады, блокады пучка Гиса и его ножек. Их делят на полные и неполные. Например, при полной атриовентрикулярной блокаде ни один импульс из синоатриального узла не проходит к атриовентрикулярному. Поэтому предсердия сокращаются в нормальном синусном ритме, а к желудочкам идут импульсы от центра автоматии 2-го порядка, т.е. атриовентрикулярного узла. Вследствие этого желудочки сокращаются в атриовентрикулярном ритме. Происходит рассогласование ритмов предсердий и желудочков. При неполной АВ блокаде уменьшается скорость проведения возбуждения от СА узла до желудочков или до них доходит лишь часть импульсов. Например, из 2-х или 3-х импульсов будет доходить один.

^ Механизмы регуляции сердечной деятельности

Приспособление сердечной деятельности к изменяющимся потребностям организма осуществляется с помощью механизмов миогенной, нервной и гуморальной регуляции. Механизмами миогенной регуляции являются гетерометрический и гомеометрический. Гетерометрический механизм заключается в увеличении силы сердечных сокращений по мере растяжения сердечной мышцы. Первым эту зависимость обнаружил Старлинг, который сформулировал закон сердца: чем больше мышца сердца растягивается в диастолу, тем сильнее ее сокращение в период систолы. Следовательно, чем больше крови поступает в камеры сердца в диастолу, тем сильнее сокращение мышцы и количество выбрасываемой крови в систолу. Однако закон Старлинга соблюдается лишь при умеренном растяжении сердечной мышцы. При ее перерастяжении сила сокращений, а следовательно систолический объем крови падают. В состоянии покоя систолический объем крови, т.е. ее количество выбрасываемое из желудочков, составляет 60-70 мл. Но это лишь половина крови находящейся в желудочках. Остающаяся кровь называется резервным объемом. При физической нагрузке увеличивается венозный приток к сердцу, сила его сокращений. Поэтому систолический объем возрастает до 120-150 мл. Гетерометрический механизм наиболее чувствителен и включается раньше других. Увеличение силы сокращений сердца наблюдается при увеличении объема циркулирующей крови всего на 1%. Рефлекторные механизмы активируются лишь при возрастании ОЦК на 5-10%. Гомеометрические механизмы не связаны с растяжением миокарда. Наиболее важным из них является эффект Анрепа. Он состоит в том, что при увеличении давления в аорте систолический объем первоначально снижается. Затем сила сокращений и систолический выброс растут. Миогенные механизмы регуляции обеспечивают приспособление кровообращения к относительно кратковременным нагрузкам. При длительном повышении нагрузки возникает рабочая гипертрофия миокарда: увеличиваются длина и диаметр мышечных волокон. Например у спортсменов вес сердца может возрастать 1,5-2 раза. При постоянной перегрузке одного отдела сердца также возникает его гипертрофия. Например гипертрофия левого желудочка развивается при гипертонической болезни.

Нервная регуляция сердечной деятельности осуществляется симпатическим и парасимпатическим отделами вегетативной нервной системы. Ядра блуждающего нерва, иннервирующего сердце, расположены в продолговатом мозге. Блуждающие нервы заканчиваются на интрамуральных ганглиях. Постганглионарные волокна правого вагуса идут к синоатриальному узлу, а левого к атриовентрикулярному. Кроме того они иннервируют миокард соответствующих предсердий. Парасимпатических окончаний в миокарде желудочков нет. Благодаря такой иннервации, правый вагус влияет преимущественно на частоту сердцебиений, а левый на скорость проведения возбуждения в атриовентрикулярном узле.

Тела симпатических нейронов, иннервирующих сердце, расположены в боковых рогах 5-ти верхних грудных сегментов спинного мозга. Аксоны этих нейронов идут к звездчатому ганглию. От него отходят постганглионарные волокна, многочисленные ветви которых иннервируют и предсердия и желудочки. В сердце имеется развитая внутрисердечная нервная система, включающая афферентные, эфферентные, вставочные нейроны и нервные сплетения. Ее считают отделом метасимпатической нервной системы. Она начинает участвовать в регуляции сердечной деятельности лишь после потери экстрамуральной иннервации. Например после пересадки сердца.

Блуждающие нервы оказывают следующие воздействия на сердце:

1. Отрицательный хронотропный эффект. Это уменьшение частоты сердечных сокращений. Он связан с тем, что правый вагус тормозит генерацию импульсов в синоатриальном узле. Под действием вагуса их генерация может временно прекращаться.

2. Отрицательный инотропный эффект. Снижение силы сердечных сокращений. Обусловлен уменьшением амплитуды и длительности ПД, генерируемых клетками пейсмекерами.

3. Отрицательный дромотропный эффект. Понижение скорости проведения возбуждения по проводящей системе сердца. Связан с воздействием левого вагуса на атриовентрикулярный узел. При достаточно сильном его возбуждении возможно возникновение временной атриовентрикулярной блокады.

4. Отрицательный батмотропный эффект. Это уменьшение возбудимости сердечной мышцы. Под влиянием вагуса удлиняется рефрактерная фаза.

Эти воздействия вагусов на сердце обусловлены тем, что их окончания выделяют ацетилхолин. Он связывается с М-холинорецепторами кардиомиоцитов и вызывает гиперполяризацию их мембраны. Поэтому уменьшаются возбудимость, проводимость, автоматия кардиомиоцитов, а как следствие сила сокращений.

Если длительно раздражать блуждающие нервы, остановившееся первоначально сердце начинает вновь сокращаться. Это явление называется ускользанием сердца из под влияния вагуса. Оно является следствием параллельного усиления влияния симпатических нервов. Центры блуждающих нервов находятся в состоянии тонуса. Поэтому импульсы от них постоянно идут к сердцу. В результате имеет место функциональное торможение сердечных сокращений. При перерезке вагусов в эксперименте или введении атропина, блокирующего передачу в холинергических синапсах, частота сердцебиений возрастает в 1,5-2 раза. Тонус центров вагуса обусловлен постоянным поступлением нервных импульсов к ним от рецепторов сосудистых рефлексогенных зон, внутренних органов, сердца.

Симпатические нервы противоположным образом воздействуют на сердечную деятельность. Они оказывают положительное хронотропное, инотропное, батмотропное и дромотропное влияния. Медиатор симпатических нервов норадреналин взаимодействует с 1-адренорецепторами мембраны кардиомиоцитов. Происходит ее деполяризация, а в результате ускоряется медленная диастолическая деполяризация в Р-клетках синоатриального узла, увеличиваются амплитуда и длительность генерируемых ПД, возрастает возбудимость клеток проводящей системы. Вследствие этого повышаются возбудимость, автоматия, проводимость и сила сокращений сердечной мышцы. Тонус симпатических центров регуляции сердечной деятельности выражен значительно слабее, чем парасимпатических.

^ Рефлекторная и гуморальная регуляция деятельности сердца

Выделяют три группы сердечных рефлексов:

1. Собственные или кардио-кардиальные. Они возникают при раздражении рецепторов самого сердца.

2. Кардио-вазальные. Наблюдаются при возбуждении рецепторов сосудов.

3. Сопряженные. Связаны с возбуждением рецепторов не относящихся к системе кровообращения.

К собственным относятся рефлексы с механорецепторов миокарда. Первый из них рефлекс Бейнбриджа. Это учащение сердцебиений при растяжении правого предсердия. Кровь из малого круга усиленно перекачивается в большой. Давление в нем снижается. При растяжении мускулатуры желудочков происходит урежение сердечных сокращений.

Кардио-вазальным являются рефлексы с рефлексогенных зон дуги аорты, разветвлений или синусов сонных артерий, других крупных артерий. При повышении артериального давления возбуждаются барорецепторы этих зон. От них нервные импульсы по афферентным нервам поступают в продолговаты мозг и активируют нейроны центров вагуса. От них импульсы идут к сердцу. Частота и сила сердечных сокращений уменьшаются, артериальное давление снижается. Хеморецепторы этих зон возбуждаются при недостатке кислорода или избытке углекислого газа. В результате их возбуждения центры вагуса тормозятся, частота и сила сердечных сокращений возрастают. Скорость кровотока увеличивается, кровь и ткани насыщаются кислородом и освобождаются от углекислого газа.

Примером сопряженных рефлексов являются рефлексы Гольца и Данини-Ашнера. При механическом раздражении брюшины или органов брюшной полости происходит урежение сердечных сокращений и даже остановка сердца. Это рефлекс Гольца. Он возникает вследствие раздражения механорецепторов и возбуждения центров вагуса. Рефлекс Данини-Ашнера это урежение сердцебиений при надавливании на глазные яблоки. Он также объясняется стимуляцией центров вагуса.

В регуляции работы сердца участвуют и факторы гуморальной системы регуляции. Адреналин и норадреналин надпочечников действуют подобно симпатическим нервам, т.е. увеличивают частоту, силу сокращений, возбудимость и проводимость сердечной мышцы. Тироксин повышает чувствительность кардиомиоцитов к действию катехоламинов - адреналина и норадреналина, а также стимулирует метаболизм клеток. Поэтому он вызывает учащение и усиление сердцебиений. Глюкокортикоиды улучшают обмен веществ в сердечной мышцы и способствуют повышению ее сократимости.

На работу сердца оказывает влияние и ионный состав крови. При увеличении содержания кальция в крови частота и сила сердечных сокращений возрастают. При снижении уменьшаются. Это связано с большим вкладом ионов кальция в генерацию ПД и сокращения кардиомиоцитов. При значительном повышении концентрации кальция сердце останавливается в систоле. В клинике для лечения некоторых заболеваний сердца используют блокаторы кальциевых каналов. Они ограничивают вход ионов кальция в кардиомиоциты, что способствует снижению метаболизма и потребляемого кислорода. Повышение концентрации ионов калия приводит к уменьшению частоты и силы сердечных сокращений. При достаточно высокой концентрации калия сердце останавливается в диастоле. При недостатке калия в крови наблюдается учащение и нарушение ритма сердечной деятельности. Поэтому препараты калия применяют при аритмиях. Во время операций на открытом сердце используют гиперкалиевые деполяризующие растворы, обеспечивающие временную остановку сердца.
1   ...   10   11   12   13   14   15   16   17   ...   31

Похожие:

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconФизиология изучает жизнедеятельность организма и отдельных его частей:...
Предметом изучения физиологии являются функции живого организма, их связь между собой, регуляция и приспособление к внешней среде,...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconПатофизиологическая задача Патологическая физиология это наука, изучающая...
В. В. Пашутин. Она изучает общие закономерности отклонений от нормального течения функции клеток, органов, систем и организма в целом...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconБелок – основа организма
Белки недаром считаются необходимым компонентом здорового рациона, и поэтому должны присутствовать на нашем столе. От них во многом...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconКлеточное строение организмов. Клетка единица строения каждого организма....
Клетка – единица строения каждого организма. Одноклеточные организмы, их строение и жизнедеятельность. Многоклеточные организмы,...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconЗадание а18 нервная система общие принципы организации
Нервная система регулирует и координирует деятельность всех органов и систем, обуславливая целостность функционирования организма....

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconМногоклеточный организм развивается из оплодотворенной яйцеклетки...
Одновременно осуществляется морфогенез – формирование органов и архитектуры тела. Таким образом, детерминация, дифференцировка, морфогенез,...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconЛат brucellosis зоонозная инфекция, передающаяся от больных животных...
Бруцеллёз (лат brucellosis) — зоонозная инфекция, передающаяся от больных животных человеку, характеризующаяся множественным поражением...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconСписок заболеваний, больных органов, частей тела или поражённых систем организма человека
Дополненные и доработанные материалы Луизы Хей и Владимира Жикаренцева, специалистами центра "Профилактика"

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом icon1. Аллергия это форма иммунного ответа организма на экзогенные вещества...
Аллергия – это форма иммунного ответа организма на экзогенные вещества антигенной или гаптеновой природы, сопровождающаяся повреждением...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconОдно из древнейших средств оздоровления организма, которое полезно...
Кроме того, в силу усиления циркуляции крови и лимфы, стимуляции обменных процессов, массаж обладает обширным терапевтическим действием...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов