1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом




Название1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом
страница9/31
Дата публикации01.08.2013
Размер3.13 Mb.
ТипИсследование
zadocs.ru > Биология > Исследование
1   ...   5   6   7   8   9   10   11   12   ...   31

^ Функциональная асимметрия полушарий

Передний мозг образован двумя полушариями, которые состоят из одинаковых долей. Однако они играют разную функциональную роль. Впервые различия между полушариями описал 1863 г. невропатолог Поль Брока, обнаруживший, что при опухолях левой лобной доли теряется способность к произношению речи. В 50-х годах ХХ века Р.Сперри и М.Газзанига исследовали больных, у которых с целью прекращения эпилептических припадков была произведена перерезка мозолистого тела. В нем проходят комиссуральные волокна, связывающие полушария. Умственные способности у людей с расщепленным мозгом не изменяются. Но с помощью специальных тестов обнаружено, что функции полушарий отличаются. Например, если предмет находится в поле зрения правого глаза, т.е. зрительная информация поступает в левое полушарие, то такой больной может назвать его, описать его свойства, прочитать или написать текст.

Если же предмет попадает в поле зрения левого глаза, то пациент даже не может назвать его и рассказать о нем. Он не может читать этим глазом. Таким образом, левое полушарие является доминирующим в отношении сознания, речи, счета, письма, абстрактного мышления, сложных произвольных движений. С другой, стороны хотя правое полушарие не имеет выраженных речевых функций, оно в определенной степени способно понимать речь и мыслить абстрактно. Но в значительно большей мере, чем левое, оно обладает механизмами сенсорного распознавания предметов, образной памяти. Восприятие музыки целиком является функцией правого полушария. Т.е. правое полушарие отвечает за неречевые функции, т.е. анализ сложных зрительных и слуховых образов, восприятие пространства, формы. Каждое полушарие изолированно принимает, перерабатывает и хранит информацию. Они обладают собственными ощущениями, мыслями, эмоциональными оценками событий. Левое полушарие обрабатывает информацию аналитически, т.е. последовательно, а правое одномоментно, интуитивно. Т.е. полушария используют разные способы познания. Вся система образования в мире направлена на развитие левого полушария, т.е. абстрактного мышления, а не интуитивного. Несмотря на функциональную асимметрию, в норме полушария работают совместно, обеспечивая все процессы человеческой психики.

^ Пластичность коры

Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи, энтероциты. Нервные клетки не обладают такой способностью. Однако у них сохраняется способность к образованию новых отростков и синапсов. Т.е. каждый нейрон способен при повреждении отростка образовывать новые. Восстановление отростков может происходить двумя путями: путем формирования нового конуса роста и образования коллатералей. Обычно росту нового аксона препятствует возникновение глиального рубца. Но несмотря на это новые синаптические контакты образуются коллатералями поврежденного аксона. Наиболее высока пластичность нейронов коры. Любой ее нейрон запрограммирован на то, что при его повреждении он активно пытается восстановить утраченные связи. Каждый нейрон вовлечен в конкурентную борьбу с другими за образование синаптических контактов. Это служит основой пластичности нейронных корковых сетей. Установлено, что при удалении мозжечка нервные пути, идущие к нему, начинают прорастать в кору. Если в интактный мозг пересадить участок мозга другого животного, то нейроны этого кусочка ткани образуют многочисленные контакты с нейронами мозга реципиента.

Пластичность коры проявляется как в нормальных условиях, например при образовании новых межкортикальных связей в процессе обучения, так и при патологии. В частности, утраченные при поражении участка коры функции берут на себя ее соседние поля или другое полушарие. Даже при поражении обширных областей коры вследствие кровоизлияния, их функции начинают выполнять соответствующие области противоположного полушария.

^ Электроэнцефалография. Ее значение для экспериментальных исследований и клиники

Электроэнцефалография (ЭЭГ)-это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на кожу накладывают электроды, сигналы от которых усиливаются и подаются на осциллограф и пишущее устройство.

В норме регистрируются следующие типы спонтанных колебаний:

1. -ритм. Это волны с частотой 8-13 Гц. Наблюдается в состоянии бодрствования, полного покоя и при закрытых глазах. Если человек открывает глаза -ритм сменяется -ритмом. Это явление называется блокадой -ритма.

2. -ритм. Его частота от 14 до 30 Гц. Наблюдается при деятельном состоянии мозга и учащается по мере повышения интенсивности умственной работы.

  1. -ритм. Колебания с частотой 4-8 Гц. Регистрируется во время засыпания, поверхностного сна и неглубоком наркозе.

4. -ритм. Частота 0,5-3,5 Гц. Наблюдается при глубоком сне и наркозе.

Чем ниже частота ритмов ЭЭГ, тем больше их амплитуда. Помимо этих основных ритмов регистрируются и другие ЭЭГ феномены. Например, по мере углубления сна появляются сонные веретена. Это периодическое увеличение частоты и амплитуды тета- ритма. При ожидании команды к действию возникает отрицательная Е -волна ожидания и т.д.

В эксперименте ЭЭГ используют для определения уровня активности мозга, а в клинике для диагностики эпилепсии (особенно скрытых форм), а также для выявление смерти мозга (кора живет 3-5 мин., стволовые нейроны 7-10, сердце 90, почки 150).

^ Структурно-функциональные особенности

вегетативной нервной системы

Все функции организма условно делят на соматические и вегетативные. Первые связаны с деятельностью мышечной системы, вторые выполняются внутренними органами, кровеносными сосудами, кровью, железами внутренней секреции и т.д. Однако это деление условно, так как такая вегетативная функция, как обмен веществ, присуща скелетным мышцам. С другой стороны, двигательная активность сопровождается изменением функций внутренних органов, сосудов, желез.

Вегетативной нервной системой (ВНС) называют совокупность нервных клеток спинного, головного мозга и вегетативных ганглиев, которые иннервируют внутренние органы и сосуды. Дуга вегетативного рефлекса отличается тем, что ее эфферентное звено имеет двухнейронное строение. Т.е. от тела первого эфферентного нейрона, расположенного в ЦНС, идет преганглионарное волокно, которое заканчивается на нейронах вегетативного ганглия, расположенного вне ЦНС. От этого второго эфферентного нейрона идет постганглионарное волокно к исполнительному органу. Нервные импульсы по вегетативным рефлекторным дугам распространяются значительно медленнее, чем по соматическим. Во-первых, это обусловлено тем, что даже простейший вегетативный рефлекс является полисинаптическим, а большинство вегетативных нервных центров включает огромное количество нейронов и синапсов. Во-вторых, преганглионарные волокна относятся к группе В, а постганглионарные С. Скорость проведения возбуждения по ним наименьшая. Все вегетативные нервы имеют значительно меньшую избирательность (вагус), чем соматические.

Вегетативная нервная система делится на 2 отдела: симпатический и парасимпатический. Тела преганглионарных симпатических нейронов лежат в боковых рогах грудных и поясничных сегментов спинного мозга. Аксоны этих нейронов выходят в составе передних корешков и оканчиваются в паравертебральных ганглиях симпатических цепочек. От ганглиев идут постганглионарные волокна, иннервирующие гладкие мышцы органов и сосудов головы, грудной, брюшной полостей малого таза, а также пищеварительные железы. Существует симпатическая иннервация не только артерий и вен, но и артериол. В целом функция симпатической нервной системы состоит в мобилизации энергетических ресурсов организма за счет процессов диссимиляции, повышении его активности, в том числе и нервной системы.

Тела преганглионарных парасимпатических нейронов находятся в сакральном отделе спинного мозга, продолговатом и среднем мозге в области ядер III, VII, IX и X пар черепно-мозговых нервов. Идущие от них преганглионарные волокна заканчиваются на нейронах парасимпатических ганглиев. Они расположены около иннервируемых органов (параорганно) или в их толще (интрамурально). Поэтому постганглионарные волокна очень короткие. Парасимпатические нервы, начинающиеся от стволовых центров, также иннервируют органы и небольшое количество сосудов головы, шеи, а также сердце, легкие, гладкие мышцы и железы ЖКТ. В ЦНС парасимпатических окончаний нет. Нервы идущие от крестцовых сегментов, иннервируют тазовые органы и сосуды. Общей функцией парасимпатического отдела является обеспечение восстановительных процессов в органах и тканях, за счет усиления ассимиляции. Таким образом, сохранение гомеостаза.

Высшие центры регуляции вегетативных функций находятся в гипоталамусе. Однако, на вегетативные центры влияет КБП. Это влияние опосредуется лимбической системой и центрами гипоталамуса.

Многие внутренние органы имеют двойную, т.е. симпатическую и парасимпатическую иннервацию. Это сердце, органы ЖКТ, малого таза и др. В этом случае, влияние отделов ВНС носит антагонистический характер. Например, симпатические нервы усиливают работу сердца, тормозят моторику органов пищеварения, сокращают сфинктеры выводных протоков пищеварительных желез и расслабляют мочевой пузырь. Парасимпатические нервы влияют на функции этих органов противоположным образом. Поэтому в физиологических условиях функциональное состояние этих органов определяется преобладанием влияния того или иного отдела ВНС. Однако для организма их воздействие является синергичным. Например, такая функциональная синергия возникает при возбуждении барорецепторов сосудов, когда повышается артериальное давление. В результате их возбуждения повышается активность парасимпатических и снижается симпатических центров. Парасимпатические нервы уменьшают частоту и силу сердечных сокращений, а торможение симпатических центров приводит к расслаблению сосудов. Артериальное давление снижается до нормы. Во многих органах, имеющих двойную вегетативную иннервацию, постоянно преобладают регуляторные влияния парасимпатической нервной системы. Это железистые клетки ЖКТ, мочевой пузырь и др. Есть органы, имеющие только одну иннервацию. Например, большинство сосудов иннервируется только симпатическими нервами, которые постоянно поддерживают их в суженном состоянии, т.е. тонусе.

В 80-х годах А.Д. Ноздрачевым сформулирована концепция метасимпатической нервной системы. Согласно ей, интрамуральные ганглии вегетативной нервной системы, образующие нервные сплетения, являются простыми нейронными сетями, аналогичными ядрам ЦНС. В этих небольших нейронных скоплениях, преимущественно находящихся в стенке органов пищеварительного канала, происходит восприятие раздражения, переработка информации и передача к эффекторным нейронам, а затем исполнительным органам. Ими являются гладкомышечные клетки пищеварительного канала, матки, кардиомиоциты. Т.е. ганглии достаточно автономны от ЦНС. Однако сигналы от них поступают и в ЦНС, перерабатываются в ней, а затем через экстрамуральные парасимпатические нервы передаются на эффекторные нейроны ганглия, а от него на исполнительный орган. Т.е. эфферентные нейроны ганглиев являются общим конечным путем и для экстрамуральных парасимпатических нервов и для других нейронов ганглиев.

В стенке пищевода, желудка, кишечника имеется 3 связанных между собой сплетения: подсерозное, межмышечное (ауэрбахово), подслизистое (мейснерово). Клетки, составляющие сплетения относятся по классификации А.С. Догеля к трем типам:

I тип - нейроны с многочисленными короткими дендритами и длинным аксоном. Аксон заканчивается на ГМК и железистых клетках пищеварительного канала. Эти нейроны являются эффекторными.

II тип - более крупные нейроны, имеющие несколько дендритов и короткий

аксон, образующий синапс на нейронах первого типа. Окончания дендритов

находятся подслизистой и слизистой оболочках. Т.е. эти клетки являются

чувствительными.

III тип - служат для передачи сигналов между другими нейронами ганглиев. Их можно считать ассоциативными, т.е. интернейронами. Их меньше других.

Кроме того, в сплетениях выделяют так называемые нейроны-генераторы. Они обладают автоматией и задают частоту ритмической активности гладким мышцам ЖКТ.

Таким образом отличительной особенностью метасимпатической нервной системы является то, что ее эфферентные нейроны всегда расположены интрамурально и регулируют частоту ритмических сокращений сердца, кишечника, матки и т.д. Поэтому даже после перерезки всех экстрамуральных нервов, идущих к этим органам, их нормальная функция сохраняется.

Наличие метасимпатической системы способствует освобождению ЦНС от излишней информации, так как метасимпатические рефлексы замыкаются в интрамуральных ганглиях. Она обеспечивает поддержание гомеостаза, управляя работой тех внутренних органов, которые имеют ее.

Регуляция функций вегетативной нервной системой осуществляется по рефлекторному принципу. Т.е. раздражение периферических рецепторов приводит к возникновению нервных импульсов, которые после анализа и синтеза в вегетативных центрах поступают на эфферентные нейроны, а затем исполнительные органы. Поэтому все вегетативные рефлексы, в зависимости от участия рецепторного и эффекторного, звена делятся на следующие группы:

1.Висцеро-висцеральные. Это рефлексы, которые возникают вследствие раздражения интерорецепторов внутренних органов и проявляются изменениями их функций. Например, при механическом раздражении брюшины или органов брюшной полости происходит урежение и ослабление сердечных сокращений. Рефлекс Гольца.

2.Висцеро-дермальные. Раздражении интерорецепторов внутренних органов, приводит к изменению потоотделения, просвета сосудов кожи, кожной чувствительности.

3.Сомато-висцеральные. Действие раздражителя на соматические рецепторы, например рецепторы кожи, приводит к изменению деятельности внутренних органов. К этой группе относится рефлекс Данини-Ашнера.

4.Висцеро-соматические. Раздражение интерорецепторов вызывает изменение двигательных функций. Возбуждение хеморецепторов сосудов углекислым газом, способствует усилению сокращений межреберных дыхательных мышц.

При нарушении механизмов вегетативной регуляции возникают изменения висцеральных функций. В частности, психосоматические заболевания.

^ Механизмы синаптической передачи в вегетативной нервной системе

Синапсы ВНС имеют в целом такое же строение, что и центральные. Однако отмечается значительное разнообразие хеморецепторов постсинаптических мембран. Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами на постсинаптической мембране которых расположены никотинчувствительные холинорецепторы. Постганглионарные холинергические волокна образуют на клетках исполнительных органов (желез, ГМК органов пищеварения, сосудов и т.д.) М-холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор-атропин). И в тех и других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза.

Постганглионарные симпатические волокна образуют 2 типа адренергических синапсов на эффекторах- -адренергические и -адренергические. Постсинаптическая мембрана первых содержит 1-и 2 -адренорецепторы. При воздействии НА на 1-адренорецепторы происходит сужение артерий и артериол внутренних органов и кожи, сокращение мышц матки, сфинктеров ЖКТ, но одновременно расслабление других гладких мышц пищеварительного канала. Постсинаптические -адренорецепторы также делятся на 1- и 2- типы. 1-адренорецепторы расположены в клетках сердечной мышцы. При действии на них НА повышается возбудимость, проводимость и сократимость кардиомиоцитов. Активация 2-адренорецепторов приводит к расширению сосудов легких, сердца и скелетных мышц, расслаблению гладких мышц бронхов, мочевого пузыря, торможению моторики органов пищеварения.

Кроме того, обнаружены постганглионарные волокна, которые образуют

на клетках внутренних органов гистаминергические, серотонинергические,

пуринергические (АТФ) синапсы.
1   ...   5   6   7   8   9   10   11   12   ...   31

Похожие:

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconФизиология изучает жизнедеятельность организма и отдельных его частей:...
Предметом изучения физиологии являются функции живого организма, их связь между собой, регуляция и приспособление к внешней среде,...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconПатофизиологическая задача Патологическая физиология это наука, изучающая...
В. В. Пашутин. Она изучает общие закономерности отклонений от нормального течения функции клеток, органов, систем и организма в целом...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconБелок – основа организма
Белки недаром считаются необходимым компонентом здорового рациона, и поэтому должны присутствовать на нашем столе. От них во многом...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconКлеточное строение организмов. Клетка единица строения каждого организма....
Клетка – единица строения каждого организма. Одноклеточные организмы, их строение и жизнедеятельность. Многоклеточные организмы,...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconЗадание а18 нервная система общие принципы организации
Нервная система регулирует и координирует деятельность всех органов и систем, обуславливая целостность функционирования организма....

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconМногоклеточный организм развивается из оплодотворенной яйцеклетки...
Одновременно осуществляется морфогенез – формирование органов и архитектуры тела. Таким образом, детерминация, дифференцировка, морфогенез,...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconЛат brucellosis зоонозная инфекция, передающаяся от больных животных...
Бруцеллёз (лат brucellosis) — зоонозная инфекция, передающаяся от больных животных человеку, характеризующаяся множественным поражением...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconСписок заболеваний, больных органов, частей тела или поражённых систем организма человека
Дополненные и доработанные материалы Луизы Хей и Владимира Жикаренцева, специалистами центра "Профилактика"

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом icon1. Аллергия это форма иммунного ответа организма на экзогенные вещества...
Аллергия – это форма иммунного ответа организма на экзогенные вещества антигенной или гаптеновой природы, сопровождающаяся повреждением...

1. Исследование механизмов функционирования клеток, тканей, органов, систем организма человека в целом iconОдно из древнейших средств оздоровления организма, которое полезно...
Кроме того, в силу усиления циркуляции крови и лимфы, стимуляции обменных процессов, массаж обладает обширным терапевтическим действием...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов