1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях




Название1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях
страница4/25
Дата публикации01.08.2013
Размер3.44 Mb.
ТипДокументы
zadocs.ru > Биология > Документы
1   2   3   4   5   6   7   8   9   ...   25

Кокки (греч. kokkos - зерно) имеют шаровидную или слегка вытя­нутую форму. Различаются между собой в зависимости от того, как они располагаются после деления. Одиночно расположенные кокки - мик­рококки, расположенные попарно - диплококки. К патогенным диплококкам относятся пневмококки, имеющие ланцетовидную форму, и бо­бовидные диплококки - менингококки и гонококки. Стрептококки де­лятся в одной плоскости и после деления не расходятся, образуя цепоч­ки (греч. streptos - цепочка). Патогенные стрептококки являются возбу­дителями гнойно-воспалительных заболеваний, ангины, рожи, скарла­тины. Тетракокки образуют сочетания из четырех кокков в результате деления в двух взаимно перпендикулярных плоскостях, сарцины (лат. sarcio - связывать) образуются при делении в трех взаимно перпендику­лярных плоскостях и имеют вид скоплений по 8-16 кокков. Стафило­кокки в результате беспорядочного деления образуют скопления, напо­минающие гроздь винограда (греч. staphyle - виноградная гроздь). Сре­ди них есть патогенные виды, вызывающие гнойно-воспалительные и септические заболевания.

Палочковидные бактерии (греч. bacteria - палочка), способные образовывать споры, называют бациллами в том случае, если спора не шире самой палочки, и клостридиями, если диаметр споры превышает диаметр палочки. Палочки, неспособные к спорообразованию, называют бактери­ями. Палочковидные бактерии, в отличие от кокков, разнообразны по ве­личине, форме и расположению клеток: короткие (1 -5 мкм) толстые, с зак­ругленными концами бактерии кишечной группы; тонкие, слегка изогну­тые палочки туберкулеза; располагающиеся под углом тонкие палочки дифтерии; крупные (3-8 мкм) палочки сибирской язвы с "обрубленными" концами, образующие длинные цепочки - стрептобациллы. К извитым формам бактерий относятся вибрионы, имеющие слегка изогнутую форму в виде запятой (холерный вибрион) и спириллы, состоящие из нескольких завитков. К извитым формам также относятся кампилобактеры, похожие под микроскопом на крылья летящей чайки.

^ Структура бактериальной клетки. Структурные элементы бактери­альной клетки можно условно разделить на: а) постоянные структурные элементы - имеются у каждого вида бактерий, в течение всей жизни бакте­рии; это клеточная стенка, цитоплазматическая мембрана, цитоплазма, нуклеоид; б) непостоянные структурные элементы, которые способны обра­зовывать не все виды бактерий, а те бактерии, которые образуют их, могут терять их и вновь приобретать в зависимости от условий существования. Это капсула, включения, пили, споры, жгутики.

Клеточная стенка покрывает всю поверхность клетки. У грамположительных бактерий клеточная стенка более толстая: до 90% - это полимерное соединение пептидогликан, связанный с тейхоевыми кис­лотами, и слой белка. У грамотрицательных бактерий клеточная стенка тоньше, но сложнее по составу: состоит из тонкого слоя пептидогликана, липополисахаридов, белков; она покрыта наружной мембраной. Наружная мембрана грамотрицательных бактерий является барьером для некоторых антибиотиков, в том числе таких, которые получены в последнее время. Возможно, что этим можно объяснить, почему с не­давнего времени в возникновении внутрибольничных инфекций все воз­растающую роль играют грамотрицательные бактерии, такие как ки­шечная палочка, синегнойная палочка. Ранее первенство в этой области принадлежало стафилококкам.

Клеточная стенка выполняет важную биологическую роль: прида­ет бактерии определенную форму, защищает ее от воздействий окру­жающей среды, участвует в транспорте питательных веществ и про­дуктов обмена. В то же время пептидогликан клеточной стенки явля­ется мишенью для действия пенициллина и других антибиотиков, которые нарушают процесс формирования полимерного пептидогликана. Отсюда понятно, почему пенициллины действуют преимуществен­но на грамположительные бактерии, причем на молодые растущие клетки.

Значение клеточной стенки в сохранении определенной формы и в защите от окружающей среды наглядно демонстрируется на примере сферопластов и протопластов, которые образуются при разрушении клеточной стенки под действием пенициллина или лизоцима. Пол­ностью или частично лишенные клеточной стенки, они имеют сфери­ческую форму, могут выживать только в гипертонической среде и не­способны к размножению. L-формы бактерий - это бактерии, полнос­тью или частично утратившие клеточную стенку, но сохранившие спо­собность к размножению. Свое название они получили в честь инсти­тута имени Листера в Англии, где были впервые получены. Не имея клеточной стенки, они также приобретают сферическую форму. L-фор­мы возникают и в естественных условиях, длительно сохраняются в организме человека и играют важную роль в патогенезе некоторых инфекционных заболеваний.

Цитоплазматическая мембрана расположена непосредственно под клеточной стенкой. Она обладает избирательной проницаемостью, и бла­годаря этому регулирует водно-солевой обмен клетки, транспорт пита­тельных веществ в клетку и выведение наружу продуктов обмена. В этих процессах участвуют ферменты пермеазы. Кроме того, здесь имеются ферменты, осуществляющие биологическое окисление.

Цитоплазматическая мембрана путем инвагинации внутрь клетки образует мембранные структуры - мезосомы. Геном клетки (ДНК) свя­зан с мезосомой, и отсюда начинается процесс репликации ДНК при делении клетки.

Цитоплазма - внутреннее гелеобразное содержимое бактериальной клетки, пронизано мембранными структурами, создающими жест­кую систему. В цитоплазме содержатся рибосомы (в которых осуще­ствляется биосинтез белков), ферменты, аминокислоты, белки, рибонуклеиновые кислоты.

Нуклеоид - это хромосома бактерий, двойная нить ДНК, коль­цевидно замкнутая, связанная с мезосомой. В отличие от ядра эукариотов, нить ДНК свободно располагается в цитоплазме, не имеет ядерной оболочки, ядрышка, белков-гистонов. Нить ДНК во много раз длиннее самой бактерии (например, у кишечной палочки длина хро­мосомы более 1 мм).

Помимо нуклеоида, в цитоплазме могут находиться внехромосомные факторы наследственности, называемые плазмидами. Это ко­роткие кольцевидные нити ДНК, прикрепленные к мезосомам.

Включения содержатся в цитоплазме некоторых бактерий в виде зерен, которые можно обнаружить при микроскопии. Большей частью это запас питательных веществ. Например, у дифтерийных палочек на концах видны зерна волютина, и это является важным признаком для определения этого вида бактерий. Вместе с тем это могут быть и скоп­ления неорганических веществ, например, серы, и продукты бактери­ального метаболизма.

Пили (лат. pili - волоски) иначе реснички, фимбрии, бахромки, вор­синки - короткие нитевидные отростки на поверхности бактерий. Пили общего типа (common pili) в количестве нескольких сотен равномерно покрывают бактерию. Они осуществляют прикрепление (адгезию) бак­терии к клетке хозяина и участвуют в питании. Половые пили (sex-пили) имеют внутри канал и образуются только клетками-донорами. Они обеспечивают конъюгацию у бактерий и переход ДНК из одной клетки в другую.

Споры образуют среди патогенных бактерий только палочки - ба­циллы и клостридии. Споры бактерий не являются способом разм­ножения, поскольку из одной клетки формируется только одна спора. Биологическая роль спор - сохранение вида в неблагоприятных усло­виях внешней среды.

Превращение бактериальной клетки в спору происходит при по­падании бактерии во внешнюю среду, чаще всего - в почву. Спора формируется внутри клетки, затем вегетативное тело лизируется. Об­разование споры происходит в течение суток. Споры чрезвычайно ус­тойчивы и могут длительное время сохранять жизнеспособность: де­сятками лет остаются живыми в почве споры возбудителей сибирской язвы, столбняка, ботулизма. Они не погибают при 100°С, убить их можно только автоклавированием, сухим жаром при 160-170°С в течение 1-2 часов, или с помощью спороцидных химических веществ. При попадании в благоприятные условия (оптимальная температура, достаточная влажность, наличие питательных веществ) происходит про­растание спор в вегетативные формы. Прогревание спор при 100°С вызывает их тепловую активацию с последующим прорастанием. Это явление используется при стерилизации дробными методами.

Спорообразование - одно из свойств, характерное для определенных видов бактерий. Форма и расположение споры внутри клетки являются постоянным признаком вида и могут быть использованы для его идентификации. Форма спор бывает круглой или овальной. Расположение центральное - у бацилл сибирской язвы, субтерминальное (ближе к одному из концов) - у клостридий ботулизма и газовой анаэробной инфекции, терминальное (на конце) - у клостридий столб­няка. Для окраски спор применяют способ Ожешки, основанный на их кислотоустойчивости.

Жгутики. Многие виды бактерий способны передвигаться благо­даря наличию жгутиков. Из патогенных бактерий только среди пало­чек и извитых форм имеются подвижные виды. Жгутики представляют собой тонкие эластичные нити, длина которых у некоторых видов в несколько раз больше длины тела самой бактерии. Число и располо­жение жгутиков является характерным видовым признаком бактерий. Различают бактерии: монотрихи - с одним жгутиком на конце тела, лофотрихи - с пучком жгутиков на конце, амфитрихи, имеющие жгути­ки на обоих концах, и перитрихи, у которых жгутики расположены по всей поверхности тела. К монотрихам относится холерный вибрион, к перитрихам - сальмонеллы брюшного тифа.

Жгутики настолько тонки, что не видны в световом микроскопе. Их можно видеть в электронном микроскопе, а также при специальных способах окраски, когда толщину жгутика искусственно увеличивают: при помощи танина достигают набухания жгутикового белка, а затем обрабатывают азотнокислым серебром или красителем, который осе­дает на жгутиках, увеличивая их толщину. Можно косвенно судить о наличии жгутиков, наблюдая подвижность живых бактерий в препа­ратах "раздавленной" или "висячей" капли. Определение подвижнос­ти у бактерий является важным диагностическим признаком, и при по­вседневной практической работе удобно применять метод посева. В столбик полужидкого питательного агара уколом производится посев бактерий. Неподвижные бактерии растут по ходу укола, а у подвиж­ных наблюдается диффузный рост.

Капсула - наружный слизистый слой, который имеется у многих бактерий. У одних видов он настолько тонок, что обнаруживается толь­ко в электронном микроскопе - это микрокапсула. У других видов бак­терий капсула хорошо выражена и видна в обычном оптическом мик­роскопе - это макрокапсула. Капсула обычно состоит из полисахаридов, а у палочки сибирской язвы - из полипептидов

Одни бактерии образуют капсулу только в организме хозяина, на­пример, пневмококки, палочка сибирской язвы, палочка чумы; другие постоянно сохраняют ее, - это капсульные бактерии, например, клебсиеллы. Капсула защищает бактерии от фагоцитоза и антител, поэтому в инфекционном процессе она играет роль одного из факторов патогенности, обеспечивающего антифагоцитарную активность возбудителя болезни. Наличие капсулы является дифференциальным признаком для оп­ределения вида таких микробов, как пневмококк, палочка сибирской язвы, клебсиеллы пневмонии, которые образуют макрокапсулу, види­мую в световом микроскопе. Для обнаружения капсулы применяют спо­соб окраски по Бурри-Гинсу: при этом на темном фоне туши видны ок­рашенные фуксином бактерии, окруженные бесцветной капсулой.

13. Морфология и ультраструктура актиномицетов. Патогенные представители. Актиномицеты – продуценты антибиотиков.

Актиномицеты – лучистые грибы, относящиеся к роду Actinomyces.

Относятся к прокариотам, располагаются под растениями.

Морфология: клетки актиномицетов обычно имеют вид длинных и ветвящихся нитей, напоминающих в ряде случаев мицелий одноклеточных грибов, но встречаются палочковидные и кокковидные формы. Нити мицелия имеют длину 100-600 мкм и толщину 0,2-1,2 мкм.

Ультраструктура: клеточная стенка, цитоплазматическая мембрана, которая ограничивает цитоплазму, где содержится нуклеоид, рибосомы, внутриклеточные включения. Мезосомы актиномицетов являются производными цитоплазматической мембраны. В составе пептидогликана некоторых актиномицетов обнаружены арабиноза, галактоза и др., отсутствующие у бактерий сахара.

Актиномицеты размножаются спорами, поперечным делением, почкованием.

Патогенные представители актиномицетов вызывают у человека актиномикоз и нокардиоз. Это Actinomyces israelli, Nocardia asteroides и другие. Возбудители актиномикоза вне организма, на питательной среде представляют собой длинные ветвящиеся нити, местами распа­дающиеся на фрагменты. В организме человека патогенные актиноми­цеты образуют друзы - переплетающиеся нити в центре с отдельными отходящими в виде лучей нитями по периферии. Отсюда название: ак­тиномицеты - лучистые грибы. Концы нитей, погруженные в ткань, утол­щены, ослизнены и имеют иной химический состав, и, подобно капсу­ле бактерий, защищают микроб от фагоцитоза.

^ Актиномицеты – продуценты антибиотиков: многие актиномицеты, средой обитания которых являются почва, образуют антибиотики, широко применяющиеся в медицинской практике.

Актиномицеты грам +; выявляются простыми методами окраски, либо окраской по методу Грама.

Актиномицеты - одноклеточные микроорганизмы, относятся к прокариотам. Их клетки имеют такую же структуру, как бактерии: кле­точную стенку, содержащую пептидогликан, цитоплазматическую мем­брану; в цитоплазме расположены нуклеоид, рибосомы, мезосомы, внутриклеточные включения. Поэтому патогенные актиномицеты чувс­твительны к антибактериальным препаратам. В то же время они име­ют сходную с грибами форму ветвящихся переплетающихся нитей, а некоторые актиномицеты, относящиеся к семейству стрентомицет, раз­множаются спорами. Другие семейства актиномицет размножаются путем фрагментации, то есть распада нитей на отдельные фрагменты.

Актиномицеты широко распространены в окружающей среде, осо­бенно в почве, участвуют в круговороте веществ в природе. Среди актиномицетов есть продуценты антибиотиков, витаминов, гормонов. Большинство антибиотиков, применяемых в настоящее время, проду­цируется актиномицетами. Это стрептомицин, тетрациклин и другие.

Патогенные представители актиномицетов вызывают у человека актиномикоз и нокардиоз. Это Actinomyces israelli, Nocardia asteroides и другие. Возбудители актиномикоза вне организма, на питательной среде представляют собой длинные ветвящиеся нити, местами распа­дающиеся на фрагменты. В организме человека патогенные актиноми­цеты образуют друзы - переплетающиеся нити в центре с отдельными отходящими в виде лучей нитями по периферии. Отсюда название: ак­тиномицеты - лучистые грибы. Концы нитей, погруженные в ткань, утол­щены, ослизнены и имеют иной химический состав, и, подобно капсу­ле бактерий, защищают микроб от фагоцитоза.

14. Спирохеты: классификация, морфология и физиология. Патогенные представители разных родов (названия по-латыни).

С. относятся к прокариотам, располагаются в классификации под животными.

Морфология: С. представляют собой тонкие спирально извитые нити, изогнутые вокруг центральной оси. Клетки С. представляют собой цитоплазматические цилиндры, отграниченные цитоплазматической мембраной (ЦМ) от тонкой и эластичной клеточной стенки. Между ЦМ и цитоплазматическим цилиндром расположены фибриллы, которые, как и жгутики бактерий, состоят из белка флагеллина. У трепонем и боррелий имеется два пучка фибрилл, прикрепленных к дисковидным образованиям – блефаропластам. Фибриллы обеспечивают разные типы движения С.: поступательное, вращательное и сгибательное.

Классификация: представители отдельных родов различаются по длине и толщине, числу и характеру завитков.

Род

Кол-во и характер завитков

Характер движения

Окраска по Романовскому - Гимзе

Borrellia


Treponema


Leptospira

3-10, крупные, неравномерные

8-12, мелкие, равномерные

Многочисленные первичные завитки, вторичные завитки в виде буквы S

Толчкообразное, сгибательно – поступательное
Плавное, сгибательно - поступательное
Очень активное, вращательно - поступательное

Сине – фиолетовая


Бледно – розовая


Розово - сиреневатая

Патогенные представители: Treponema pallidum - вызывает сифилис, Treponema pertenue – возбудитель фрамбезии, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

С. в отличие от других бактерий плохо воспринимают анилиновые красители. Выявляются в препаратах «раздавленной» или «висячей» капли в темнопольном или фазово – контрастном микроскопе, а также окраской по Романовскому – Гимзе смесью метиленового синего, эозина и азура: на мазок наносят рабочий раствор красителя (2 капли красителя на 1 мл дистиллированной воды) на 10-20 мин.; затем препарат промывают водой и высушивают на воздухе. Боррелии в отличие от трепонем и лептоспир хорошо окрашиваются анилиновыми красителями.

Спирохеты относятся к прокариотам. Имеют признаки, общие как с бактериями, так и с простейшими микроорганизмами. Это од­ноклеточные микробы, имеющие форму длинных тонких спирально изогнутых клеток, способны к активному движению. В неблагоприят­ных условиях некоторые из них могут переходить в форму цисты.

Исследования в электронном микроскопе позволили установить структуру клеток спирохет. Это цитоплазматические цилиндры, окру­женные цитоплазматической мембраной и клеточной стенкой, содер­жащей пептидогликан. В цитоплазме находятся нуклеоид, рибосомы, мезосомы, включения. Под цитоплазматической мембраной располо­жены фибриллы, обеспечивающие разнообразное движение спирохет - поступательное, вращательное, сгибательное.

Сапрофитные спирохеты имеются в окружающей среде. Несколь­ко непатогенных видов являются постоянными обитателями организ­ма человека. Патогенные для человека виды относятся к трем родам: Treponema, Borrelia, Leptospira. Они различаются по форме и рас­положению завитков. Трепонемы состоят из 8-12 одинаковых по ве­личине завитков, положение которых при движении не меняется. Боррелии образуют 5-8 завитков, меняющихся при движении подобно дви­жению змейки. Лептоспиры состоят из 40-50 очень мелких постоянных завитков, концы изогнуты в виде крючков и имеют утолщения. При движении концы лептоспир изгибаются в разные стороны, причем об­разуются форму в виде русской буквы С или латинской S. Спирохеты за исключением боррелий, плохо воспринимают анилиновые красители, поэтому их окрашивают по Романовскому-Гимза. По лучше всего на­блюдать спирохеты в живом виде в темном поле зрения.

Патогенные представители спирохет: Treponema pallidum - вызывает сифилис, Borrelia recurrentis - возвратный тиф, Borrelia burgdorferi - болезнь Лайма, Leptospira interrogans - лептоспироз.

15. Микроскопические грибы. Классификация, строение разных групп и патогенные представители.

Грибы (Fungi, Mycetes) - эукариоты, низшие растения, лишенные хлорофилла, в связи с чем они не синтезируют органические соедине­ния углерода, то есть это гетеротрофы, имеют дифференцированное ядро, покрыты оболочкой, содержащей хитин. В отличие от бактерий, грибы не имеют в составе оболочки пептидогликана, поэтому нечув­ствительны к пенициллинам. Для цитоплазмы грибов характерно при­сутствие большого количества разнообразных включений и вакуолей.

Среди микроскопических грибов (микромицетов) имеются однок­леточные и многоклеточные микроорганизмы, различающиеся между собой по морфологии и способам размножения. Для грибов характер­но разнообразие способов размножения: деление, фрагментация, поч­кование, образование спор - бесполых и половых.

При микробиологических исследованиях наиболее часто прихо­диться сталкиваться с плесенями, дрожжами и представителями сбор­ной группы так называемых несовершенных грибов.

Плесени образуют типичный мицелий, стелющийся по питатель­ному субстрату. От мицелия вверх поднимаются воздушные ветви, ко­торые оканчиваются плодоносящими телами различной формы, несущими споры.

Мукоровые или головчатые плесени (Mucor) - одноклеточные гри­бы с шаровидным плодоносящим телом, наполненным эндоспорами.

Плесени рода Aspergillus - многоклеточные грибы с плодоносящим телом, при микроскопии напоминающим наконечник лейки, разбрыз­гивающей струйки воды; отсюда название "леечная плесень". Некото­рые виды аспергилл используются в промышленности для производства лимонной кислоты и других веществ. Есть виды, вызывающие заболе­вания кожи и легких у человека - аспергиллезы.

Плесени рода Penicillum, или кистевики - многоклеточные грибы с плодоносящим телом в виде кисточки. Из некоторых видов зеленой плесени был получен первый антибиотик - пенициллин. Среди пенициллов есть патогенные для человека виды, вызывающие пенициллиоз. Различные виды плесеней могут быть причиной порчи пищевых про­дуктов, медикаментов, биологических препаратов.

Дрожжи - дрожжевые грибы (Saccharomycetes, Blastomycetes) име­ют форму круглых или овальных клеток, во много раз крупнее бакте­рий. Средний размер дрожжевых клеток приблизительно равен попе­речнику эритроцита (7-10 мкм). Отличительной морфологической осо­бенностью дрожжей является отсутствие нитевидного мицелия и обыч­ное размножение почкованием. На поверхности материнских клеток возникают отростки, которые, отделившись затем от материнской клет­ки, превращаются в самостоятельные новые особи. Кроме почкова­ния, истинные дрожжи могут размножаться половым способом, обра­зуя аски - половые споры.

Большинство видов дрожжей непатогенны. Их способность вызы­вать брожение широко используется в промышленности - в хлебопе­чении, виноделии, в получении спиртов и витаминов. Существуют па­тогенные дрожжевые грибы, вызывающие заболевания, например, Blastomyces dermatitidis - возбудитель бластомикоза, Pneumocystis carinii - возбудитель пневмоцистоза легких.

Несовершенные грибы не имеют специальных органов плодоноше­ния. К ним относятся дрожжеподобные грибы и дерматомицеты.

Дрожжеподобные грибы, подобно истинным дрожжам, представля­ют собой круглые или овальные клетки, размножающиеся почковани­ем. Но есть два существенных признака, по которым их отличают при проведении микробиологических исследований: дрожжеподобные гри­бы, в отличие от истинных дрожжей, образуют псевдомицелий и не образуют половых спор. Дрожжеподобные грибы рода Candida мо­гут быть обнаружены на слизистых оболочках здоровых людей. У новорожденных и грудных детей, у ослабленных больных они вызывают кандидоз - поражение слизистых оболочек, кожи, внутренних органов. Это заболевание может возникнуть вследствие экзогенного заражения. Но чаще кандидоз развивается как эндогенная инфекция при длитель­ном лечении антибиотиками широкого спектра действия, которые, бу­дучи направлены против бактерий - возбудителей заболевания, попутно подавляют рост бактерий - представителей нормальной микрофлоры организма, что ведет к дисбактериозу. Будучи эукариотамй, грибы Кандида нечувствительны к антибактериальным антибиотикам. Ос­вободившись от антагонистического влияния бактерий, они безудерж­но размножаются и вызывают кандидозы. Наиболее часто возбудите­лями кандидозов у человека являются виды Candida albicans, C.tropicalis и другие.

Дерматомицеты являются возбудителями заболеваний кожи (греч. derma - кожа), волос, ногтей. Это трихофитон - возбудитель трихофитии, эпидермофитон - возбудитель эпидермофитии, микроспорон - воз­будитель микроспории, ахорион - возбудитель парши. В волосах, че­шуйках кожи, соскобах ногтей отрезки мицелия дерматомицетов хо­рошо видны, так как сильно преломляют свет.

16. Морфология и физиология микоплазм. Виды, патогенные для человека.

Микоплазмы относятся к прокариотам, размеры их 125-200 нм. Это наиболее мелкие из клеточных микробов, величина их близка к преде­лу разрешающей способности оптического микроскопа. У них отсут­ствует клеточная стенка, и в этом отношении они близки к L-формам бактерий. С отсутствием клеточной стенки связаны характерные осо­бенности микоплазм. Они не имеют постоянной формы, поэтому встре­чаются сферические, овальные, нитевидные формы. Так как микоплазмы не образуют пептидогликана, они нечувствительны к пенициллинам и другим антибиотикам, избирательно подавляющим синтез этого вещества.

Микоплазмы широко распространены в природе. Их можно выде­лить из почвы, сточных вод, от животных и человека. Существуют и патогенные виды: Mycoplasma pneumoniae является возбудителем рес­пираторных заболеваний. Условно-патогенные микоплазмы также иг­рают роль в развитии заболеваний: M.hominis - заболеваний мочепо­лового тракта, M.arthritidis - ревматоидного артрита. Из рода уреаплазм патогенными являются Ureaplasma urealyticum, вызывающие за­болевания мочеполовых органов.

17. Риккетсии: морфология и физиология. Патогенные представители.

Риккетсии - прокариотные микробы, получили свое название в память американского микробиолога Говарда Тейлора Риккетса, погибшего в ре­зультате лабораторного заражения сыпным тифом. Риккетсии сходны с бактериями по клеточному строению и структуре, а с вирусами их сближа­ет строгий внутриклеточный паразитизм. Они не могут размножаться вне живых клеток хозяина, так как не синтезируют дыхательные ферменты и поэтому неспособны к самостоятельному биологическому окислению. В от­личие от вирусов, они содержат оба вида нуклеиновых кислот - ДНК и РНК - и осуществляют процесс биосинтеза белков.

Для риккетсий характерен плеоморфизм, то есть в зависимости от ус­ловий существования у них изменяется морфология. В благоприятных для размножения условиях это кокковидные формы (300-400 нм) или короткие палочки, в условиях, когда процесс роста происходит быстрее, чем размно­жение, преобладают длинные палочки и нитевидные формы.

Многие виды риккетсий вызывают заболевания человека, называемые риккетсиозами. Это Rickettsia prowazekii (риккетсий Провацека) - возбуди­тель эпидемического сыпного тифа и Coxiella burneti (коксиелла Бернета) -возбудитель Ку-лихорадки.

18. Морфология и химический состав вирусов. Отличие вирусов от других организмов. Методы культивирования вирусов. Культуры клеток и их характеристика.

Первооткрывателем вирусов, основоположником вирусологии яв­ляется русский ученый Дмитрий Иосифович Ивановский, открывший в 1892 году вирус табачной мозаики (ВТМ)

Вирусы настолько отличаются от микроорганизмов, что выделе­ны в особое царство - царство Vira.

Особенности вирусов, отличающие их от всех других живых су­ществ:

1) наличие только одного типа нуклеиновой кислоты - ДНК или РНК, в то время как клетки всех остальных живых существ содержат ДНК и РНК, взаимодействие которых необходимо для биосинтеза бел­ков;

2) отсутствие собственных белоксинтезирующих систем и клеточ­ного строения;

3) внутриклеточный паразитизм на молекулярном (генетическом) уровне;

4) убиквитарность (распространенны повсеместно);

5) имеют микроскопические размеры.

Внеклеточная форма вируса - вирион и вирус, находящийся внут­ри клетки хозяина - это две разные формы вируса.

Вирионы разных вирусов имеют размеры от 15 до 400 наномет­ров. Нанометр - это 10-9 метра (рис. 6). Наиболее мелкие вирусы - виру­сы полиомиелита - имеют вирион размером 17-25 им, средние - вирус гриппа - 80-120 нм, крупные - вирус оспы - 300-400 им.

В центре вириона располагается его геном. Это нуклеиновая кис­лота - ДНК или РНК (однонитевая или двунитевая). Плюс-однонитевая РНК несет две функции: наследственную и информационную, напри­мер у вируса полиомиелита. Минус-однонитевая РНК, как, например, у вируса гриппа, несет только наследственную функцию, и только в процессе репродукции вируса к ней достраивается плюс-нить иРНК.

Вокруг нуклеиновой кислоты симметрично располагаются белко­вые молекулы - капсомеры, составляющие капсид (лат. capsa - коробка). Различают спиральный тип симметрии, когда капсомеры уложены по всей длине молекулы нуклеиновой кислоты, и кубический, когда кап­сомеры располагаются в виде двадцатигранника (икосаэдра).

Вирионы, содержащие только нуклеиновую кислоту и белок, сос­тавляют нуклеокапсид. Это простые вирусы, например, ВТМ, вирус полиомиелита.

У вирионов сложноорганизованных вирусов имеется еще поверхностная оболочка - суперкапсид, содержащий, кроме белков, также углево­ды, липиды, компоненты клет­ки хозяина. Строение вирио­на лежит в основе классифи­кации вирусов. По типу нук­леиновой кислоты их делят на: рибовирусы и дезоксири-бовирусы, далее по структу­ре вирионов, по месту размно­жения и по другим признакам проводится деление на семей­ства и роды.

Вследствие малых разме­ров вирусы не видны в свето­вом микроскопе. Только наи­более крупный из них - вирус оспы - можно наблюдать в виде мелких точечных образо­ваний - элементарных телец Пашена.

Размножаясь в чувствительных клетках организма, вирусы оспы, бе­шенства, гриппа образуют в них внутриклеточные включения. Их мож­но обнаружить в световом или в люминесцентном микроскопе. Обна­ружение внутриклеточных включений используется для диагностики. Например, включения Бабеша-Негри в нервных клетках об­наруживаются при бешенстве.

Морфологию вирионов изучают в электронном микроскопе. Ви­русы имеют разные формы: сферическую, нитевидную, палочковидную.

Методы культивирования вирусов:

1. Заражение животных (в\брюшинно, в\в, в\м, интраназально, заражение в мозг и другие)

2. На куриных эмбрионах после заражения их на хорион – аллантоисную оболочку, в аллантоисную полость, в амниотическую полость, в желточный мешок.

3. На культуре клеток различных тканей.

Культура ткани – это клетки ткани, выращенные вне организма на специальной питательной среде. Клетки ткани в искусственных условиях сохраняют присущий им обмен веществ и восприимчивость к определенным вирусам. Наиболее пригодными для культивирования вирусов являются клетки с быстрым росток и высоким обменом веществ. По этой причине широко применяют эмбриональные ткани (фибробласты куриных эмбрионов, клетки амниона человека и др.), а также культуры тканей опухолей. Выращивание клеток культур тканей производят в специальных флаконах (колбы – матрицы, флаконы Карреля и др.) и в пробирках. Культура клеток для роста должна иметь какую – либо опору, например, пластинки стекла, стенку пробирки. В выросшую культуру ткани, которая покрывает стенку сосуда или пластинку стекла в виде однослойного клеточного пласта, засевают материал, содержащий вирус. Работу производят в стерильных условиях. Для подавления роста другой микрофлоры (кроме вирусов) вируссодержащий материал предварительно обрабатывают антибиотиками, чаще пенициллином и стрептомицином. Размножение вируса в клетках определяют по цитопатическому действию (ЦПД): в результате размножения вируса в клетках при микроскопии обнаруживаются включения, дегенеративные изменения и в конечном итоге клетки гибнут. Так как рост клеток прекращается, ph среды мало изменяется по сравнению с контролем (клетки без вируса). В связи с этим не изменяется и цвет среды. Питательной средой для культуры тканей могут быть различные растворы, состав которых приближается к составу жидкостей организма (синтетическая среда 199, солевой раствор Хенкса с сывороткой, гидролизат лактальбумина с сывороткой и другие). В настоящее время в вирусологической практике чаще всего применят свежие культуры клеток (первичные или первично – трипсинизированные) и перевиваемые культуры (линии) клеток.

Первично – трипсинизированные культуры клеток готовят из органов взрослых животных (чаще из почек обезьян и других животных) и эмбрионов человека, куриных фиброфластов путем трипсинизации кусочков тканей с последующим культивированием в питательной среде. С этой целью кусочки тканей измельчают ножницами (или другим способом), а затем промывают буферным раствором Хенкса для удаления крови и обрабатывают 0,25 – 0,3 % раствором трипсина. Трипсин разрушает межклеточные мостики и освобождает клетки. С помощью камеры Горяева подсчитывают количество клеток, разводят до концентрации 400 тыс. клеток в 1 мл. Полученную взвесь клеток разливают в пробирки, плотно закрывают стерильными резиновыми пробками и помещают в термостат при 37°С в почти горизонтальном положении (под углом 50°) в специальных штативах. Через 3-4 дня на стенке пробирки образуется сплошной слой размножившихся клеток. Пробирки с хорошим ростом ткани отбирают для заражения вирусом.

Перевиваемые культуры клеток (растущие) - это стабильные линии клеток, пассируемые вне организма в течение многих лет. Их получают из злокачественных опухолей и из нормальных (эмбриональных) тканей человека и животных. К ним относятся: 1) линия Hela – клетки карциномы шейки матки человека; 2)линия Hep – 2 – клетки злокачественной опухоли гортани человека; 3) линия Детройт – 6 – клетки, выделенные из костного мозга человека, больного раком легких; 4) линии А – 0 и А – 1 – клетки амниона человека; 5) линия СОЦ – клетки сердца обезьяны циномольгус и другие.

Полуперевиваемые или диплоидные культуры клеток – это клетки тканей человека, сохраняющие в процессе пассажей – диплоидный набор хромосом. Диплоидные клетки человека не подвергаются злокачественному перерождению и этим выгодно отличаются от опухолевых.
1   2   3   4   5   6   7   8   9   ...   25

Похожие:

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconП лан практических занятий по микробиологии, вирусологии, иммунологии
Рабочая тетрадь по микробиологии, вирусологии, иммунологии. Методические материалы для самостоятельной работы студентов по микробиологии,...

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconЭкзаменационные вопросы по микробиологии и иммунологии для студентов III
Значение медицинской микробиологии и иммунологии в практической деятельности врача-стоматолога

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconКраткий курс лекций по медицинской микробиологии, вирусологии и иммунологии...
Рудаков Н. В. Краткий курс лекций по медицинской микробиологии, вирусологии и иммунологии. Часть Частная микробиология и вирусология:...

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconРпга реакция прямой гемагглютиннации
Предмет, задачи и основные этапы развития медицинской микробиологии, вирусологии и иммунологии

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconЭкзаменационные вопросы по микробиологии Общая часть
Место микробиологии и иммунологии в современной медицине. Роль микробиологии и иммунологии в подготовке врачей-клиницистов и врачей...

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconЛекция № История развития микробиологии, вирусологии и иммунологии. Предмет, методы, задачи

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях iconГосударственное автономное образовательное учреждение спо со
Вы можете воспользоваться: атласом по медицинской микробиологии, вирусологии и иммунологии и тетрадями для практических занятий

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях icon7. Метаболизм бактерий. Методы выделения чистой культуры. Культуральные...
Основные этапы развития микробиологии(М) и иммунологии(И). Работы Пастера, Коха и их значение в развитии М. и И

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях icon1 Место микробиологии и иммунологии в современной медици­не. Роль...
Место микробиологии и иммунологии в современной медици­не. Роль микробиологии и иммунологии в подготовке врачей-клиницистов и врачей...

1. Значение медицинской микробиологии в деятельности врача. Достижения микробиологии, вирусологии и иммунологии в развитии медицины и задачи в современных условиях icon1 Место микробиологии и иммунологии в современной медици­не. Роль...
Место микробиологии и иммунологии в современной медици­не. Роль микробиологии и иммунологии в подготовке врачей-клиницистов и врачей...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов