РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3




НазваниеРН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3
страница1/9
Дата публикации06.03.2016
Размер1 Mb.
ТипДокументы
zadocs.ru > Биология > Документы
  1   2   3   4   5   6   7   8   9
1.Кровь. Понятие, физиологические функции.

Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты.

Функции:

  • Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция);

  • доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция);

  • уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция);

  • участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням

  • Защитная функция крови имеет две стороны: в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного реагирования, которые защищают организм от любой чужеродной молекулы. Во-вторых, это способность крови свёртываться.

  • поддерживает кислотно-щелочной и водный баланс организма, осмотрическое и онкотическое давление. В норме рН крови составляет 7,36-7,4. Регуляцию рН осуществляют буферные системы крови.

  • Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях.

рН 7,36-7,42

Росм 7,9-8,1 атм

Ронк 0,03-0,04 атм

плотность 1,05-1,06 г/см3
2.Химический состав крови. Минеральные и органические вещест ва

Химический состав растворимых в плазме крови веществ относительно постоянен, так как существуют мощные нервные и гуморальные механизмы, поддерживающие гомеостаз (постоянство внутренней среды). Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Распределение электролитов в жидких средах организма очень специфично по своему количественному и качественному составу. Из катионов плазмы натрий составляет 93% от всего их количества. Среди анионов следует выделить прежде всего хлор и бикарбонат. Сумма анионов и катионов практически одинакова, т.е. вся система электронейтральна.

Плазма крови — жидкая часть крови, которая содержит воду и взвешенные в ней вещества — белки и другие соединения.

  1. Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода.

  2. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-).

  3. Органические вещества (около 9 %) в составе крови подразделяются на

  1. азотсодержащие: белковые 65-85 г/л и небелковые 15-25 г/л (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов)

  2. безазотистые: УВ 4,3-6,2 г/л и липиды 6,0-8,0 г/л (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин).

Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы).

В цельной крови железо содержится в основном в эритроцитах (около 18,5 ммоль/л), в плазме концентрация его составляет в среднем 0,02 ммоль/л. Ежедневно в процессе распада гемоглобина эритроцитов в селезенке и печени освобождается около 25 мг железа и столько же потребляется при синтезе гемоглобина в клетках кроветворных тканей.
^ 4.Гемоглобин, строение, свойства, биологическая роль

Гемоглобин взрослого организма является тетрамером, состоящим из двух α- и двух β-субьединиц с молекулярными массами примерно 16 кДа. α- и β-цепи отличаются аминокислотной последовательностью, но имеют сходную конформацию. Каждая субъединица несет группу гема с ионом двухвалентного железа в центре. Содержание Hb в крови составляет 140-180 г/л у мужчин и 120-160 г/л у женщин, т. е. вдвое выше по сравнению с белками плазмы (50-80 г/л). Поэтому Hb вносит наибольший вклад в образование рН-буферной емкости крови.

Гемоглобин в качестве белкового компонента содержит глобин, а небелкового – гем. Видовые различия гемоглобина обусловлены глобином, в то время как гем одинаков у всех видов гемоглобина. Основу структуры простетической группы большинства гемосодержащих белков составляет порфириновое кольцо, являющееся в свою очередь производным тетрапиррольного соединения – порфирина.

Атом железа расположен в центре гема-пигмента, придающего крови характерный красный цвет. Каждая из 4 молекул гема «обернута» одной полипептидной цепью. В молекуле гемоглобина взрослого человека HbА содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин. Две из них, называемые α-цепями, имеют одинаковую первичную структуру и по 141 аминокислотному остатку. Две другие, обозначаемые β-цепями, также идентично построены и содержат по 146 аминокислотных остатков. Таким образом, вся молекула белковой части гемоглобина состоит из 574 аминокислот. Во многих положениях α- и β-цепи содержат разные аминокислотные последовательности, хотя и имеют почти одинаковые пространственные структуры. Получены доказательства, что в структуре гемоглобинов более 20 видов животных 9 аминокислот в последовательности оказались одинаковыми, консервативными (инвариантными), определяющими функции гемоглобинов; некоторые из них находятся вблизи гема, в составе участка связывания с кислородом, другие – в составе неполярной внутренней структуры глобулы.

Hb= α2β2

2α цепи и 2β цепи-96%

4 гема-4%
^ 3.Особенности строения, развития и метаболизма эритроцита.
Эритроциты - высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка.

^ Дифференцировка эритроцитов-эритроцит готовится стать собой 2 недели.


Интерлейкин-3 синтезируется Т-лимфоцитами, а также клетками костного мозга. Это низкомолекулярный белок группы цитокинов - регуляторов роста и дифференцировки клеток.

Дальнейшую пролиферацию и дифференцировку унипотентной клетки эритроидного ряда регулирует синтезирующийся в почках гормон эритропоэтин.

В процессе дифференцировки на стадии эритробласта происходят интенсивный синтез гемоглобина, конденсация хроматина, уменьшение размера ядра и его удаление. Образующийся ретикулоцит ещё содержит глобиновую мРНК и активно синтезирует гемоглобин. Циркулирующие в крови ретикулоциты лишаются рибосом, ЭР, митохондрий и в течение двух суток превращаются в эритроциты.
Строение.Строение спектрина (А), околомембранного белкового комплекса (Б) и цитоскелета эритроцитов (В). Каждый димер спектрина состоит из двух антипараллельных, нековалентносвязанных между собой α- и β-полипептидных цепей (А). Белок полосы 4.1 образует со спетрином и актином "узловой комплекс", который посредством белка полосы 4.1 связывается с цитоплазматическим доменом гликофорина. Анкирин соединяет спектрин с основным интегральным белком плазматической мембраны - белком полосы 3 (Б). На цитоплазматической поверхности мембраны эритроцита имеется гибкая сетеобразная структура, состоящая из белков и обеспечивающая пластичность эритроцита при прохождении им через мелкие капилляры (В).



Важненько:Интегральный гликопротеин гликофорин присутствует только в плазматической мембране эритроцитов. К N-концевой части белка, расположенной на наружной поверхности мембраны, присоединено около 20 олигосахаридных цепей. Олигосахариды гликофорина - антигенные детерминанты системы групп крови АВО.

Спектрин - периферический мембранный белок, нековалентно связанный с цитоплазматической поверхностью липидного бислоя мембраны,является основным белком цитоскелета эритроцитов. Спектрин состоит из α- и β-полипептидных цепей, имеющих доменное строение; α- и β-цепи димера расположены антипараллельно, перекручены друг с другом и нековалентно взаимодействуют во многих точках. Спектрин может прикрепляться к мембране и с помощью белка анкирина. Этот крупный белок соединяется с β-цепью спектрина и цитоплазматическим доменом интегрального белка мембраны - белка полосы 3(белок-переносчик ионов С1- и НСО3- через плазматическую мембрану эритроцитов по механизму пассивного антипорта). Анкирин не только фиксирует спектрин на мембране, но и уменьшает скорость диффузии белка полосы 3 в липидном слое.
Метаболизм

Метаболизм глюкозы

Эритроциты лишены митохондрий, поэтому в качестве энергетического материала они могут использовать только глюкозу. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Около 90% поступающей глюкозы используется в анаэробном гликолизе, а остальные 10% - в пентозофосфатном пути.
Важная особенность анаэробного гликолиза в эритроцитах по сравнению с другими клетками - присутствие в них фермента бисфосфоглицератмутазы. Бисфосфоглицератмутаза катализирует образование 2,3-бисфосфоглицерата(служит важным аллостерическим регулятором связывания кислорода гемоглобином) из 1,3-бисфосфоглицерата..

Глюкоза в эритроцитах используется и в пентозофосфатном пути, окислительный этап которого обеспечивает образование кофермента NADPH, необходимого для восстановления глутатиона .




^ Обезвреживание кислорода

Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала (О2-), пероксида водорода (Н2О2) и гидроксил радикала (ОН.). Эритроциты содержат ферментативную систему, предотвращающую токсическое действие активных форм кислорода и разрушение мембран эритроцитов. Постоянный источник активных форм кислорода в эритроцитах - неферментативное окисление гемоглобина в метгемоглобин:
Метгемоглобинредуктазная сисгема состоит из цитохрома B5 и флавопротеина цитохром B5 редуктазы, донором водорода для которой служит NADH, образующийся в глицеральдегиддегидрогеназной реакции гликолиза

Цитохром B5 восстанавливает Fe3+ метгемог-лобина в Fe2+:
Hb-Fe3+ + цит. b5 восст. → HbFe2+ + цит. b5 ок. .
Окисленный цитохром B5 далее восстанавливается цитохром B5 редуктазой:
Цит. B5 ок + NADH → цит. B5 восст. + NAD+.
Супероксидный анион с помощью фермента супероксидцисмутазы превращается в пероксид водорода:
O2- + O2- + Н+ → H2О2 + O2 .

Пероксид водорода разрушается каталазой и содержащим селен ферментом глутатионпероксидазой. Донором водорода в этой реакции служит глутатион - трипептид глутамилцистеинилглицин (GSH) (см. раздел 12).
2Н2О → 2Н2О + О2; 2GSH + 2Н2О2 → GSSG + 2Н2О .
Окисленный глутатион (GSSG) восстанавливается NADPH-зависимой глутатионредуктазой. Восстановление NADP для этой реакции обеспечивают окислительные реакции пентозофосфатного пути (см. раздел 7).
^ 5.Варианты первичной структуры и свойств гемоглобина,гемоглабинопатии.
Hb взрослого организма состоит, как упомянуто выше, из двух α- и двух β-цепей (α2β2). Наряду с этой основной формой (^ HbA1) в крови присутствуют незначительные количества второй формы с более высоким сродством к O2, у второй β-цепи заменены δ-цепя-ми (HbA2, α2δ2). Две другие формы Hb встречаются только в эмбриональном периоде развития. В первые три месяца образуются эмбриональные гемоглобины состава α2ε2-P и α2γ2-F. Затем вплоть до рождения доминирует фетальный гемоглобин (HbF), который постепенно заменяется на первом месяце жизни на HbА. Эмбриональный и фетальный гемоглобины обладают более высоким сродством к О2 по сравнению с HbА, так как они должны переносить кислород из системы материнского кровообращения.
Классическим примером наследственной гемоглобинопатии является серповидно-клеточная анемия. При этой патологии эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Гемоглобин S после отдачи кислорода в тканях он превращается в плохо растворимую дез-окси-форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Последние деформируют клетку и приводят к массивному гемолизу. Болезнь протекает остро, и дети, гомозиготные по мутантному гену, часто умирают в раннем возрасте. Химический дефект при серповидно-клеточной анемии был раскрыт В. Ингремом и сводится к замене единственной аминокислоты, а именно глутаминовой, в 6-м положении с N-конца на валин в β-цепях молекулы гемоглобина HbS. Это результат мутации в молекуле ДНК, кодирующей синтез β-цепи гемоглобина.



Вопрос № 6

Схема связывания газов гемоглобином. Карбокси – и метгемоглобин.
Связывание газов гемоглобином
□Оксигемоглобин Hb O2 (Fe2+)
□Карбоксигемоглобин Hb CO (Fe2+)
□Карбгемоглобин Hb-NH-COOH (Fe2+)
□Метгемоглобин Мet Hb(Fe3+)

Карбоксигемоглобин (HbCO) — прочное соединение гемоглобина и угарного газа. Избыток карбоксигемоглобина в крови приводит к кислородному голоданию, головокружению, тошноте, рвоте или даже смерти, так как угарный газ, связанный с гемоглобином, лишает его возможности присоединять к себе кислород.

МЕТГЕМОГЛОБИН - форма гемоглобина, в которой железо гема окислено до Fe (III); не способен переносить кислород. Образование метгемоглобина в организме (напр., при отравлениях нитратами, анилином) приводит к кислородному голоданию.
Вопрос № 7

Транспорт кровью кислорода и двуокиси углерода( схема)

апанепрн

екнекн

Вопрос № 8

Биосинтез гема. (формулы, ферменты) и его регуляция.
рис. 13-2. синтез гема. цифрами на схеме указаны ферменты: 1 - аминолевулинатсинтаза; 2 - аминолевулинатдегидратаза; 3 - порфобилиногендезаминаза; 4 - уропорфириноген iii косинтаза; 5 - уропорфириногендекарбоксилаза; 6 - копропорфи-риноген iii оксидаза; 7 - протопорфириногеноксидаза; 8 - феррохелатаза. буквами обозначены заместители в пиррольных кольцах: м - метил, в - винил, п - остатки пропионовой кислоты, а - ацетил, пф - пиридоксальфосфат. донором железа служит депонирующий железо в клетках белок ферритин.

Рис. 13-2. Синтез гема. Цифрами на схеме указаны ферменты: 1 - аминолевулинатсинтаза; 2 - аминолевулинатдегидратаза; 3 - порфобилиногендезаминаза; 4 - уропорфириноген III косинтаза; 5 - уропорфириногендекарбоксилаза; 6 - копропорфи-риноген III оксидаза; 7 - протопорфириногеноксидаза; 8 - феррохелатаза. Буквами обозначены заместители в пиррольных кольцах: М - метил, В - винил, П - остатки пропионовой кислоты, А - ацетил, ПФ - пиридоксальфосфат. Донором железа служит депонирующий железо в клетках белок ферритин.

Регуляторную реакцию синтеза гема катализирует пиридоксальзависимый фермент аминолевулинатсинтаза. Скорость реакции регулируется аллостерически и на уровне трансляции фермента.

Аллостерическим ингибитором и корепрессором синтеза аминолевулинатсинтазы является гем (рис. 13-5).

рис. 13-5. регуляция синтеза гема и гемоглобина. гем по принципу отрицательной обратной связи ингибирует аминолевулинатсинтазу и аминолевулинатдегидратазу и является индуктором трансляции α- и β-цепей гемоглобина.


Рис. 13-5. Регуляция синтеза гема и гемоглобина. Гем по принципу отрицательной обратной связи ингибирует аминолевулинатсинтазу и аминолевулинатдегидратазу и является индуктором трансляции α- и β-цепей гемоглобина

В ретикулоцитах синтез этого фермента на этапе трансляции регулирует железо. На участке инициации мРНК, кодирующей фермент, имеется

последовательность нуклеотидов, образующая шпилечную петлю, которая называется железочувствительным элементом (от англ, iron-responsive element, IRE) (рис. 13-6).

При высоких концентрациях железа в клетках оно образует комплекс с остатками цистеина регуляторного железосвязывающего белка. Взаимодействие железа с регуляторным железосвязывающим белком вызывает снижение сродства этого белка к IRE-элементу мРНК, кодирующей аминолевулинатсинтазу, и продолжение трансляции (рис. 13-6, А). При низких концентрациях железа железосвязывающий белок присоединяется к железо-чувствительному элементу, находящемуся на 5'-нетранслируемом конце мРНК, и трансляция аминолевулинатсинтазы тормозится (рис. 13-6, Б).

Аминолевулинатдегидратаза также аллостерически ингибируется гемом, но так как активность этого фермента почти в 80 раз превышает активность аминолевулинатсинтазы, то это не имеет большого физиологического значения.

Дефицит пиридоксальфосфата и лекарственные препараты, которые являются его структурными аналогами, снижают активность аминолевулинатсинтазы.
Вопрос № 9

Нарушение биосинтеза гема. Порфирии


Порфирии – заболевания, обусловленные нарушениями начальных этапов синтеза гема и сопровождающиеся накопление порфиринов и их предшественников.

      • Первичные – генетический дефект ферментов синтеза

      • Вторичные – нарушения регуляции биосинтеза

  • Наследственные:

    • Эритропоэтические

      • уропорфирия

      • протопорфирия

    • Печёночные

      • острая перемежающаяся порфирия

      • копропорфирия

      • урокопропорфирия

    • Смешанные


Наследственные и приобретённые нарушения синтеза гема, сопровождающиеся повышением содержания порфириногенов, а такие продуктов их окисления в тканях и крови и появлением их в моче, называют порфириями. 

Наследственные порфирии обусловлены генетическими дефектами ферментов, участвующих в синтезе гема, за исключением аминолевулинатсинтазы. При этих заболеваниях отмечают снижение образования гема. Поскольку гем - аллостерический ингибитор аминолевулинатсинтазы, то активность этого фермента повышается, и это приводит к накоплению промежуточных продуктов синтеза гема - аминолевулиновой кислоты и порфириногенов.

В зависимости от основной локализации патологического процесса различают печёночные и эритропоэтические наследственные порфирии. Эритропоэтические порфирии сопровождаются накоплением порфиринов в нормобластах и эритроцитах, а печёночные - в гепатоцитах.

При тяжёлых формах порфирии наблюдают нейропсихические расстройства, нарушения функций РЭС, повреждения кожи. Порфириногены не окрашены и не флуоресцируют, но на свету они легко превращаются в порфирины. Последние проявляют интенсивную красную флуоресценцию в ультрафиолетовых лучах. В коже на солнце в результате взаимодействия с порфиринами кислород переходит в синглетное состояние. Синглетный кислород вызывает ускорение ПОЛ клеточных мембран и разрушение клеток, поэтому порфирии часто сопровождаются фотосенсибилизацией и изъязвлением открытых участков кожи. Нейропсихические расстройства при порфириях связаны с тем, что аминолевулинат и порфириногены являются нейротоксинами.

Иногда при лёгких формах наследственных порфирии заболевание может протекать бессимптомно, но приём лекарств, являющихся индукторами синтеза аминолевулинатсинтазы, может вызвать обострение болезни. Индукторами синтеза аминолевулинатсинтазы являются такие известные лекарства, как сульфаниламиды, барбитураты, диклофенак, вольтарен, стероиды, гестагены. В некоторых случаях симптомы болезни не проявляются до периода полового созревания, когда повышение образования β-стероидов вызывает индукцию синтеза аминолевулинатсинтазы. Порфирии наблюдают и при отравлениях солями свинца, так как свинец нгибирует аминолевулинатдегидратазу и феррохелатазу. Некоторые галогенсодержащие гербициды и инсектициды являются индукторами синтеза аминолевулинатсинтазы, поэтому попадание их в организм сопровождается симптомами порфирии.

Вопрос № 10

Схема распада гемоглобина. "Непрямой" билирубин.


гем

билир

^ Катаболизм гема

Первая реакция катаболизма гема происходит при участии NADPH-зависимого ферментативного

комплекса гемоксигеназы. Ферментная сисгема локализована в мембране ЭР, в области электронтранспортных цепей микросомального окисления. Фермент катализирует расщепление связи между двумя пиррольными кольцами, содержащих винильные остатки, - таким образом, раскрывается структура кольца (рис. 13-11). В ходе реакции образуются линейный тетрапир-рол - биливердин(пигмент жёлтого цвета) и монооксид углерода (СО), который получается из углерода метениловой группы. Гем индуцирует транскрипцию гена гемоксигеназы, абсолютно специфичной по отношению к тему.

Ионы железа, освободившиеся при распаде гема, могут быть использованы для синтеза новых молекул гемоглобина или для синтеза других железосодержащих белков. Биливердин восстанавливается до билирубина NADPH-зависимым ферментом биливердинредуктазой.Билирубин образуется не только при распаде гемоглобина, не также при катаболизме других гемсодержащю белков, таких как цитохромы и миоглобин. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека - примерно 250-350 мг билирубина. Дальнейший метаболизм билирубина происходит в печени
^ 11. Обезвреживание билирубина печенью. Формула конъюгированного (прямого) билирубина

Поглощение билирубина паренхиматозными клетками печени

Комплекс "альбумин-билирубин", доставляемый с током крови в печеНb, на поверхности плазматической мембраны гепатоцита диссоциирует. Высвобожденный билирубин образует временный комплекс с липидами плазматической мембраны. Облегчённая диффузия билирубина в гепатоциты осуществляется двумя типами белков-переносчиков: лигандина (он транспортирует основное количество билирубина) и протеина Z. Активность поглощения билирубина гепатоцитом зависит от скорости его метаболизма в клетке.

Лигандин и протеин Z обнаружены также в клетках почек и кишечника, поэтому при недостаточности функции печени они способны компенсировать ослабление процессов детоксикации в этом органе.

^ Конъюгация билирубина в гладком ЭР

В гладком ЭР гепатоцитов к билирубину присоединяются (реакция конъюгации) полярные группы, главным образом от глюкуроновой кислоты.Билирубин имеет 2 карбоксильные группы, поэтому может соединяться с 2 молекулами глюкуроновой кислоты, образуя хорошо

^ Рис. 13-12. Структура билирубиндиглюкуронида (конъюгированный, "прямой" билирубин). Глюкуроновая кислота присоединяется эфирной связью к двум остаткам пропионовой кислоты с образованием ацилглюкуронида. растворимый в воде конъюгат - диглюкуронид билирубина (конъюгированный, или прямой, билирубин) описание: рис. 13-12. структура билирубиндиглюкуронида (конъю-гированный,

Донором глюкуроновой кислоты служит УДФ-глюкуронат. Специфические ферменты, УДФ-глюкуронилтрансферазы (уридиндифосфоглюкуронилтрансферазы) катализируют образование моно- и диглюкуронидов билирубина (рис. 13-13). Индукторами синтеза УДФ-глюкуронилтрансфераз служат некоторые лекарственные препараты, например, фенобарбитал

Секреция конъюгированного билирубина в жёлчь идёт по механизму активного транспорта, т.е. против градиента концентрации. Активный транспорт является, вероятно, ско-рость-лимитирующей стадией всего процесса метаболизма билирубина в печени. В норме диглюкуронид билирубина - главная форма экскреции билирубина в жёлчь, однако не исключается

описание: рис. 13-13. образование билирубиндиглюкуронида.


Рис. 13-13. Образование билирубиндиглюкуронида.

присутствие небольшого количества моноглюкуронида. Транспорт конъюгирован-ного билирубина из печени в жёлчь активируется теми же лекарствами, которые способны индуцировать конъюгацию билирубина. Таким образом, можно сказать, что скорость конъюгации билирубина и активный транспорт билирубинглюкуронида из гепатоцитов в жёлчь строго взаимосвязаны
^ 12. Нарушения обмена билирубина. Гипербилирубинемия и ее причины.

Когда содержание билирубина превышает норму, говорят о гипербилирубинемии. В зависимости от того, концентрация какого типа билирубина повышена в плазме - неконъюгированного или конъюгированного, - гипербилирубинемию классифицируют как неконъюгированную и конъюгированную.

У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

Причинами гипербилирубинемии могут быть увеличение образования билирубина, превышающее способность печени экскретировать его, или повреждение печени, приводящее к нарушению секреции билирубина в жёлчь в нормальных количествах. Гипербилирубинемию отмечают также при закупорке желчевыводящих протоков печени.
13. Желтухи, причины. Типы желтух. Желтуха новорожденного

Причинами гипербилирубинемии могут быть увеличение образования билирубина, превышающее способность печени экскретировать его, или повреждение печени, приводящее к нарушению секреции билирубина в жёлчь в нормальных количествах. Гипербилирубинемию отмечают также при закупорке желчевыводящих протоков печени. Во всех случаях содержание билирубина в крови повышается. При достижении определённой концентрации он диффундирует в ткани, окрашивая их в жёлтый цвет. Пожелтение тканей из-за отложения в них билирубина называют желтухой. Клинически желтуха может не проявляться до тех пор, пока концентрация билирубина в плазме крови не превысит верхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л.

Типы желтух:

  1. Гемолитическая (надпечёночная) желтуха

  2. Печёночно-клеточная (печёночная) желтуха

  3. Механическая, или обтурационная (подпечёночная) желтуха

  4. Желтуха новорожденного


Желтуха новорождённых

Частая разновидность гемолитической желтухи новорождённых - "физиологическая желтуха", наблюдающаяся в первые дни жизни ребёнка. Причиной повышения концентрации непрямого билирубина в крови служит ускоренный гемолиз и недостаточность функции белков и ферментов печени, ответственных за поглощение, конъюгацию и секрецию прямого билирубина. У новорождённых не только снижена активность УДФ-глюкуронилтрансферазы, но и, по-видимому, недостаточно активно происходит синтез второго субстрата реакции конъюгации УДФ-глюкуроната

Известно, что УДФ-глюкуронилтрансфераза - индуцируемый фермент (см. раздел 12). Новорождённым с физиологической желтухой вводят лекарственный препарат фенобарбитал, индуцирующее действие которого было описано в разделе 12.Одно из неприятных осложнений "физиологической желтухи" - билирубиновая энцефалопатия. Когда концентрация неконъюгированного билирубина превышает 340 мкмоль/л, он проходит через гематоэнцефалический барьер головного мозга и вызывает его поражение.

^ 2. Печёночно-клеточная (печёночная) желтуха

Печёночно-клеточная (печёночная) желтуха обусловлена повреждением гепатоцитов и жёлчных капилляров, например, при острых вирусных инфекциях, хроническом и токсических гепатитах.Причина повышения концентрации билирубина в крови - поражение и некроз части печёночных клеток. Происходит задержка билирубина в печени, чему способствует резкое ослабление метаболических процессов в поражённых гепатоцитах, которые теряют способность нормально выполнять различные биохимические и физиологические процессы, в частности переводить конъюгированный (прямой) билирубин из клеток в жёлчь против градиента концентрации. Для печёночно-клеточной желтухи характерно то, что вместо преобладающих в норме диглюкуронидов билирубина в поражённой печёночной клетке образуются

^ 14. Диагностическое значение определения концентрации билирубина в биологических жидкостях человека при различных типах желтух

В настоящее время для определения содержания билирубина в сыворотке (плазме) крови используют предложенный в 1916 г. Ван дер Бергом метод определения билирубина в сыворотке крови, основанный на диазореакции.

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). В клинике конъ-югированный билирубин называют прямым, потому что он водорастворим и может быстро взаимодействовать с диазореагентом, образуя соединение розового цвета, - это и есть прямая реакция Ван дер Берга. Неконъюгированный билирубин гидрофобен, поэтому в плазме крови содержится в комплексе с альбумином и не реагирует с диазореактивом до тех пор, пока не добавлен органический растворитель, например этанол, который осаждает альбумин. Неконъюгированный илирубин, взаимодействующий с азокрасителем только после осаждения белка, называют непрямым билирубином.

Когда содержание билирубина превышает норму, говорят о гипербилирубинемии. В зависимости от того, концентрация какого типа билирубина повышена в плазме - неконъюгированного или конъюгированного, - гипербилирубинемию классифицируют как неконъюгированную и конъюгированную.

У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

При диагностике желтух надо иметь в виду, что на практике редко отмечают желтуху какого-либо одного типа в "чистом" виде. Чаще встречается сочетание того или иного типа. Так, при выраженной гемолитической желтухе, сопровождающейся повышением концентрации непрямого билирубина, неизбежно страдают различные органы, в том числе и печень, что может вносить элементы паренхиматозной желтухи, т.е. повышение в крови и моче прямого билирубина. В свою очередь, паренхиматозная желтуха, как правило, включает в себя элементы механической. При подпечёночной (механической) желтухе, например при раке головки поджелудочной железы, неизбежен повышенный гемолиз как следствие раковой интоксикации и, как следствие, повышение в крови как прямого, так и непрямого билирубина.

Итак, гипербилирубинемия может быть следствием избытка как связанного, так и свободного билирубина. Измерение их концентрацийпо отдельности необходимо при постановке диагноза желтухи. Если концентрация билирубина в плазме <100 мкмоль/л и другие тесты функции печени дают нормальные результаты, возможно предположить, что повышение обусловлено за счёт непрямого билирубина. Чтобы подтвердить это, можно сделать анализ мочи, поскольку при повышении концентрации непрямого билирубина в плазме прямой билирубин в моче отсутствует.

При дифференциальной диагностике желтух необходимо учитывать содержание уробилиногенов в моче. В норме за сутки из организма выделяется в составе мочи около 4 мг уробилиногенов. Если с мочой выделяется повышенное количество уробилиногенов, то это - свидетельство недостаточности функции печени, например при печёночной или гемолитической желтухе. Присутствие в моче не только уробилиногенов, но и прямого билирубина указывает на поражение печени и нарушение поступления жёлчи в кишечник.

^ 15. Белки сыворотки крови. Общее содержание, функции. Отклонение в содержании общего белка сыворотки крови, причины

В плазме крови содержится 7% всех белков организма при концентрации 60 - 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

Группа

Белки

^ К-ция в сыв-ке , г/л

Функция

Альбумины

Транстиретин

0,25

Транспорт тироксина и трийодтиронина

 

Альбумин

40

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

α1-Глобулины

α1 -Антитрипсин

2,5

Ингибитор протеиназ

 

ЛПВП

0,35

Транспорт холестерола

 

Протромбин

0,1

Фактор II свёртывания крови

 

Транскортин

0,03

Транспорт кортизола, кортикостерона, прогестерона

 

Кислый α1-гликопротеин

1

Транспорт прогестерона

 

Тироксинсвязывающий глобулин

0,02

Транспорт тироксина и трийодтиронина

α2-Глобулины

Церулоплазмин

0,35

Транспорт ионов меди, оксидоредуктаза

 

Антитромбин III

0,3

Ингибитор плазменных протеаз

 

Гаптоглобин

1

Связывание гемоглобина

 

α2-Макроглобулин

2,6

Ингибитор плазменных протеиназ, транспорт цинка

 

Ретинолсвязыва-ющий белок

0,04

Транспорт ретинола

 

Витамин D связывающий белок

0,4

Транспорт кальциферола

β-Глобулины

ЛПНП

3,5

Транспорт холестерола

 

Трансферрин

3

Транспорт ионов железа

 

Фибриноген

3

Фактор I свёртывания крови

 

Транскобаламин

25Ч10-9

Транспорт витамина B12

 

Глобулин связывающий белок

20Ч10-6

Транспорт тестостерона и эстрадиола

 

С-реактивный белок

<0,01

Активация комплемента

γ-Глобулины

IgG

12

Поздние антитела

 

IgA

3,5

Антитела, защищающие слизистые оболочки

 

IgM

1,3

Ранние антитела

 

IgD

0,03

Рецепторы В-лимфоцитов

 

IgE

<0,01

Реагин

  • Белки плазмы образуют важнейшую буферную систему крови и поддерживают рН крови в пределах 7,37 - 7,43.

  • Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) вьшолняют транспортную функцию.

  • Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.

  • Белки плазмы крови являются резервом аминокислот для организма.

  • Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55-65%), α1-глобулины (2- 4%), α2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%) (рис. 14-19).

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16-17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин - клетки почки.

Для многих белков плазмы, например альбумина, α1-антитрипсина, гаптоглобина, транс-феррина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эвддцитоза "состарившиеся" белки поступают в клетки печени, где разрушаются. Т1/2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой.

Под термином «общий белок сыворотки крови» или «общий белок крови» понимается большое количество белков, присутствующих в сыворотке крови и различающихся между собой по структуре, физико-химическим свойствам, функции. Все белки сыворотки крови делят на альбумин и глобулины. В плазме крови помимо альбумина и глобулинов содержится также фибриноген, поэтому содержание общего белка в плазме крови несколько выше, чем в сыворотке.
  1   2   3   4   5   6   7   8   9

Добавить документ в свой блог или на сайт

Похожие:

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconРешение выделенных задач необходимо представить в письменном виде...
Моль идеального газа, первоначально находившегося под давлением 15 атм при 300 К, расширяется изотермически, пока давление не станет...

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconСнi атм ставка платы за выброс 1 тонны i-го загрязняющего
Расчет платы за выбросы загрязняющих веществ в атмосферу от стационарных источников

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconХимический элемент, символ Cu, имеет порядковый номер 29, атомный...
Медь. Химический элемент, символ Cu, имеет порядковый номер 29, атомный вес 63, 54, основную валентность II, плотность 8, 9 г/см3,...

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconДревесина относится к легким конструкционным материалам. Ее плотность...
А1, А2 (внутри отапливаемых помещений при температуре до 35 0С и относительной влажности воздуха до 75%) и Б1, Б2 (внутри неотапливаемых...

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconТемпературные поправки к плотности нефтепродуктов
Плотность – это физическая величина, характеризующая содержание массы вещества в единице объёма. Плотность (кг/м3) определяется как...

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconЗ акись азота nos бесцветный газ с характерным запахом, тяжелее воздуха...
Закись азота nos бесцветный газ с характерным запахом, тяжелее воздуха (относительная плотность 1,527)

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 icon«Материаловедение»
Физические свойства строительных материалов (плотность, пористость, водопоглощение)

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconКонтрольная работа по теме: «Молекулярная физика. Тепловые явления»
В комнате объемом 30м3 испарили капельку духов, содержащую ароматическое вещество массой m. Его молярная масса равна 130 г/моль,...

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconКулирная гладь
Плотность – бывает различной, но самая распространенная для пошива футболок 160гр/м2

РН 7,36-7,42 Росм 7,9-8,1 атм Ронк 0,03-0,04 атм плотность 1,05-1,06 г/см3 iconЭкзаменационные вопросы по электротехнике
Электрический ток, его направление и плотность. Сила тока и единицы ее измерения

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов