1. основные понятия в области метрологии




Название1. основные понятия в области метрологии
страница1/9
Дата публикации16.08.2013
Размер0.76 Mb.
ТипДокументы
zadocs.ru > Физика > Документы
  1   2   3   4   5   6   7   8   9

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ В ОБЛАСТИ МЕТРОЛОГИИ



1.1 Основные термины и определения в области метрологии

Основные термины и определения в области метрологии регламентируются рекомендациями по межгосударственной стандартизации РМГ 29 – 99 «ГСИ. Метрология. Основные термины и определения».

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Метрология включает в себя три раздела:

1) теоретическая (фундаментальная) метрология – раздел метрологии, предметом которого является разработка фундаментальных основ метрологии;

^ 2) законодательная метрология – раздел метрологии, предметом которого яв­ляется установление обязательных технических и юридических требований по применению единиц физических величин, эталонов, методов и средств измерений, направленных на обеспечение един­ства и необходимости точности измерений в инте­ресах общества;

^ 3) практическая (прикладная) метрология – раздел метрологии, предметом которого яв­ляются вопросы практического применения раз­работок теоретической метрологии и положений законодательной метрологии.

Объектами метрологии являются физические величины, их единицы, средства измерений, эталоны, методики выполнения измерений.

Традиционным объектом метрологии является физическая величина – одно из свойств физического объекта (фи­зической системы, явления или процесса), общее в качественном отношении для многих физичес­ких объектов, но в количественном отношении индивидуальное для каждого из них.

^ Единство измерений – состояние измерений, характеризующееся тем, что их результаты выражаются в узаконен­ных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводи­мых первичными эталонами, а погрешности ре­зультатов измерений известны и с заданной веро­ятностью не выходят за установленные пределы.

^ 1.2 Основное уравнение измерений

Для установления различия в количественном содержании ото­бражаемого данной физической величиной свойства изучаемых объектов (явлений, процессов) введено понятие «размер физической величины» – количественная оп­ределенность физической величины, присущая конкретному мате­риальному объекту, системе, явлению или процессу. Истинный размер физи­ческой величины является объективной реальностью, не завися­щей от того, измеряют соответствующую характеристику свойст­ва объекта или нет.

Ко­личественной оценкой физической величины является значение физической величины – выражение размера физической величины в виде некоторого числа принятых для нее единиц.

^ Числовое значение физической величины – отвлеченное число, входящее в значение величины.

Данные определения формализовано выражаются в виде:
X = q [X], (1.1)
где Х – физическая величина;

q – числовое значение величины Х;

[Х] – единица измерения величины Х.

Например, за единицу измерения напряжения электрического тока принят 1 В. Тогда значение напряжения электрической сети U = q [U] = 220 [1B] = 220B. Здесь числовое значение q = 220. Но если за единицу напряжения принять [1 кВ], то U = q [U] = 0,22 [1 кВ] = 0,22 кВ, т. е. числовое значение q = 0,22, а размер величины не изменяется.

Уравнение (2.1) называется основным уравнением измерений, показывающим, что числовое значение величины зависит от размера принятой единицы измерения.

^ 1.3 Шкалы измерений

Упорядоченная совокупность значений физической величины, служащая исходной основой для измерений данной величины, называется шкалой физической величины.

Все виды шкал измерений разделяются на следующие:

^ 1) шкалы наименований характеризуются только отношением эквивалентности различных качественных проявлений свойства. Эти шкалы не имеют нуля и единицы измерений, в них отсутствуют отношения сопоставления типа «больше – меньше». Пример шкал наименований: шкалы цветов, представляемые в виде атласов цве­тов;

^ 2) шкалы порядка свойства величин описывают как отношением эквивалентности, так и отношением порядка по возрастанию или убыванию количественного проявления свойства. В этих шкалах может в ряде случаев иметься нуль (нулевая отметка), но прин­ципиальным для них является отсутствие единицы измерения, по­скольку невозможно установить, в какое число раз больше или меньше проявляется свойство величины. Примеры шкал порядка: шкалы чисел твердости, баллов силы ветра, землетрясений;

^ 3) шкалы интервалов (разностей) описывают свойства величин не только с помощью отношений эквивалентности и порядка, но также и с применением суммирования и пропорциональности ин­тервалов (разностей) между количественными проявлениями свойства. Шкалы разностей могут иметь условные нули и единицы измерений, установленные по согласованию. Так, по шкале интервалов времени их можно суммировать (вычитать) и сравни­вать, во сколько раз один интервал больше (меньше) другого;

^ 4) шкалы отношений описывают свойства величин, для множеств количественных проявлений которых применимы логические отно­шения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования. В шкалах отношений существует естественный нуль и по согласованию устанавливается единица измерения. Примерами шкалы отношений яв­ляются шкалы массы и термодинамической температуры;

^ 5) абсолютные шкалы, кроме всех признаков шкал отношений, обладают дополнительным признаком: в них естественно, одно­значно присутствует определение единицы измерения. Абсолют­ные шкалы присущи относительным единицам таким, как коэф­фициенты усиления, ослабления, полезного действия и др. Ряду абсолютных шкал, например, коэффициентов полезного действия присущи границы, заключенные между нулем и едини­цей.

Шкалы наименований и порядка относятся к условным (неметрическим) шкалам – шкала физической величины, исходные значения которой выражены в условных единицах. Шкалы интервалов, отношений и абсолютные называются метрическими.

^ ТЕМА 2. ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ И ИХ ЕДИНИЦЫ
2.1 Физические величины

Физические величины разделяют:

1) основные – физические величины, входящие в систему величин и условно принятые в качестве независи­мых от других величин этой системы (пример – масса m);

^ 2) производные – физические величины, входящие в систему величин и определяемые через основные величины этой системы (пример – сила F = m·a).

К основным величинам относятся: длина, масса, время, сила электрического тока, термодинамическая температура, количество вещества, сила света. К производным – такие, как сила, частота и т.д.

^ 2.2 Единицы физических величин. Система единиц СИ

Единица измерения физической величины – физическая величина фиксированного раз­мера, которой условно присвоено числовое зна­чение, равное 1, и применяемая для количествен­ного выражения однородных с ней физических величин.

Совокупность основных и производных еди­ниц физических величин, образованная в соот­ветствии с принципами для заданной системы физических величин называется системой единиц физических величин.

Единица физической величины, входящая в принятую систему единиц, называется системной.

В РФ используется международная система единиц СИ, устанавливаемая ГОСТ 8.417 – 2002 «ГСИ. Единицы величин».

Единицы, входящие в систему, делятся на основные (единица основной физической величины в данной системе) и производные (единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или с основными и уже определенными производными).

Производные единицы бывают когерентными – производная единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент равен 1. Пример: единица «ньютон» является когерентной единицам «метр, килограмм, секунда»: 1 Н = м·кг·с-2.

Таблица 2.1 – Основные единицы системы СИ

Величина

Единица

наименование

рекомендуе-мое обозна-чение

наименование

обозначение

Длина

l

метр

м

Масса

m

килограмм

кг

Время

t

секунда

с

Сила электрического тока

I

ампер

А

Термодинамическая температура

T

кельвин

К

Количество вещества

n, ν

моль

моль

Сила света

J

кандела

кд


Таблица 2.2 – Пример производных единиц системы СИ

Величина

Единица

наименование

обозна-чение

выражение через основные единицы

Плоский угол

радиан

рад

м·м-1 = 1

Телесный угол

стерадиан

ср

м2·м-2 = 1

Частота

герц

Гц

с-1

Сила

ньютон

Н

м·кг·с-2

Давление

паскаль

Па

м-1·кг·с-2

Энергия, работа, количество теплоты

джоуль

Дж

м2·кг·с-2

Мощность

ватт

Вт

м2·кг·с-3

Электрическое напряжение, электрический потенциал, разность электрических потенциалов, ЭДС

вольт

В

м2·кг·с-3·А-1

Электрическая емкость

фарад

Ф

м-2·кг-1·с4·А2

Электрическое сопротивление

ом

Ом

м2·кг·с-3·А-2


ГОСТ 8.417 устанавливает разрешенные к применению наравне с единицами СИ единицы других систем и внесистемные единицы – единица физической величины, не входящая в принятую систему единиц (таблица 2.3).


Таблица 2.3 – Пример внесистемных единиц, допускаемых к применению наравне с единицами системы СИ

Величина

Единица

наименование

обозна-чение

выражение через единицы СИ

Масса

тонна

т

1·10-3 кг

Объем, вместимость

литр

л

1·10-3 м3

Энергия

киловатт-час

кВт·ч

3,6·106 Дж

Сила

дина

дин

1·10-5 Н

килограмм-сила

кгс

9,80665 Н

Мощность

лошадиная сила

л.с.

735,499 Вт

Давление

бар

бар

1·105 Па


Также стандарт устанавливает кратные (единица физической величины, в целое число раз большая системной и внесистемной единицы) и дольные (единица физической величины, в целое число раз меньшая системной или внесистемной единицы) (таблица 2.4).
Таблица 2.4 – Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц

Множитель

Приставка

Обозначение приставки

Множитель

Приставка

Обозначение приставки

10

экса

Э

10

деци

д

10

пета

П

10

санти

с

10

тера

Т

10

милли

м

10

гига

Г

10

микро

мк

10

мега

М

10

нано

н

10

кило

к

10

пико

п

10

гекто

г

10

фемто

ф

10

дека

да

10

атто

а


Например, системная единица «метр» (м); кратная ей – «километр» (км), дольная – миллиметр «мм» (мм).

^ ТЕМА 3. ИЗМЕРЕНИЯ
3.1 Классификация измерений

Измерение физической величины – совокупность операций по применению тех­нического средства, хранящего единицу физичес­кой величины, обеспечивающих нахождение со­отношения (в явном или неявном виде) измеряе­мой величины с ее единицей и получение значе­ния этой величины.

Измерения классифицируются по ряду признаков.

Признак 1. По общим приемам получения результатов измерений:

1) прямые – измерения, при которых искомое значение физичес­кой величины получают непосредственно. Примерами прямых измерений являются: измере­ния длины линейкой, т. е. путем сравнения искомой величины с мерой – линейкой и др.;

^ 2) косвенные – измерения, при которых искомое значение величи­ны определяют на основании результатов прямых измерений других физических величин, функциональ­но связанных с искомой величиной. Например, мощность электрической цепи пос­тоянного тока в соответствии с формулой P = I·U можно определить, проведя прямые измерения силы тока и напряжения;

^ 3) совокупные – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь;

^ 4) совместные – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.

Признак 2. По отношению к изменению измеряемой величины:

^ 1) статические – измерения физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Пример: измерение длины детали при нормальной температуре;

^ 2) динамические – измерения изменяющейся по размеру физической величины.

Признак 3. По числу измерений:

1) однократные – измерения, выполненные один раз;

^ 2) многократные – измерения физической величины одного и того же размера, результат которых получен из нескольких следующих друг за другом измерений, т. е. состоящие из ряда однократных измерений.

Признак 4. По способу выражения результатов измерений:

^ 1) абсолютные – измерения, основанные на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Пример: измерение силы F = mg основано на измерении основной величины - массы m и использова­нии физической постоянной g (в точке измерения массы);

^ 2) относительные – измерения отношения величины к одноимен­ной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную. Пример: измерение плотности жидкости ареометром;

Признак 5. По характеристике точности:

1) равноточные – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинако­вой тщательностью;

2) неравноточные – ряд измерений какой-либо величины, вы­полненных различающимися по точности средства­ми измерений и (или) в разных условиях.

^ 3.2 Принципы измерений

Принцип измерений – это физическое явление или эффект, положенное в основу измерений. Рассмотрим лишь несколько широко распространенных эффектов.

^ 1. Пьезоэлектрический эффект заключается в возникновении ЭДС на поверхности (гранях) некоторых кристаллов (кварц, турмалин, искусственные пьезоэлектрические материалы – пьезокерамики и др.) под действием внешних сил (сжатие, растяжение). Наибольшее применение для измерений нашли кварц и пьезокерамики (например, титанат бария), обладающие достаточно высокой механической прочностью и температурной стабильностью (кварц до температуры примерно 200 °С, пьезокерамика – до 115 °С). Пьезоэлектрический эффект обратим: ЭДС, приложенная к пьезоэлектрическому кристаллу, вызывает механические напряжения на их поверхности.

^ 2. Термоэлектрический эффект широко применяется при измерениях температуры, причем используются две основных разновидности способов использования этого эффекта.

В первом используется свойство изменения электрического сопротивления металлов и полупроводников при изменении температуры. Из металлов часто применяются медь (для обычных измерений) и платина (для высокоточных измерений). Соответствующий измерительный преобразователь называется терморезистором. Чувствительные элементы полупроводникового преобразователя – термистора – изготавливаются из окислов различных металлов. С увеличением температуры сопротивление термистора уменьшается, в то время как у терморезистора – возрастает. Зависимость изменения сопротивления термисторов при изменении температуры существенно нелинейна, у медных терморезисторов – линейна, у платиновых аппроксимируется квадратным трехчленом. Платиновые терморезисторы поз­оляют измерять температуру в пределах от минус 200 до + 1000 °С.

Другим способом использования термоэлектрического эффекта является возникновение термо-ЭДС в замкнутом контуре, состоящем из двух разнородных проводников (или полупроводников), соединенных (спаянных) между собой на одном конце, а на другом подключенным к измерителю ЭДС, при различии температуры в месте спая и в месте соединения с измерителем. Соответствующие соединения двух разнородных проводников (полупроводников) называются термопарами. Широко используются для термопар хромель, копель, константан, платина и др. Термопары позволяют измерять температуру в широком диапазоне (от минус 200 до + 2800 °С). Например, пара хромель-константан позволяет измерять температуру до + 700 °С, а пара вольфрам-рений – до + 2800 °С. При этом приходится применять чувствительные изме­рители ЭДС, так как величина термо-ЭДС составляет от значений примерно 10 до 80 мкВ/°С.

^ 3. Фотоэлектрический эффект. Для целей измерений используется внешний и внутренний фотоэффекты.

Внешний фотоэффект возникает в вакуумированном баллоне, имеющем анод и фотокатод. При освещении фотокатода в нем под влиянием фотонов света эмитируются электроны. В случае наличия между анодом и фотокатодом электрического напряжения эмитируемые фотокатодом электроны образуют электрический ток, называемый фототоком. Таким образом, происходит преобразование световой энергии в электрическую. Описанный преобразователь называется фотоэлементом. Существуют также газонаполненные фотоэлементы.

^ Внутренний фотоэффект возникает при освещении слоя между некоторыми полупроводниками и металлами. В этом слое возбуждается ЭДС. У ряда полупроводников под влиянием светового излучения изменяется электрическое сопротивление. Иногда этот эффект называется фоторезистивным, а соответствующие устройства – фоторезисторами. «Темновое» (при отсутствии освещения) сопротивление фоторезистора достаточно большое (например, 108 Ом). При освещении оно может уменьшиться до 105 Ом. Фоторезисторы обладают высокой чувствительностью, существенно превышающей чувствительность фотоэлементов. В качестве фоточувствительного материала применяют сернистый кадмий, сернистый свинец, кремний и др.

^ 3.3 Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

^ Методика выполнения измерений – установленная совокупность операций и правил при измерении, выполнение которых обеспечивает получение результатов измерений с гарантированной точностью в соответствии с принятым методом.

Методы измерений делятся:

^ 1) метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений;

2) метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (пример: измерение массы на рычажных весах с уравновешиванием гирями (мерами массы с известным значением)). Методы сравнения реализуются следующими способами:

- дифференциальный метод измерений – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Точность этого метода может быть высокой и определяется точностью величины, воспроизводимой мерой. Характерным примером диффе­ренциального метода, иногда называемого методом неполного уравновешивания, является приведенный на рисунке 3.1. Вольтметр V включается с помощью переключателя П в цепь с измеряемым сопротивлением rx или в цепь с регулируемым потенциометром (мерой) r0. При достижении одинаковых показаний вольтметра (rx = r0) регистрируется искомое значение rx;

- нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Характерным примером нулевого метода является измерение активного сопротивления мостом постоянного тока (рисунок 3.2).

Рисунок 3.1 – Дифференциальный метод измерений

Рисунок 3.2 – Нулевой метод измерений

Мостовая схема оказывается полностью уравновешенной (гальванометр G показывает нуль), когда выполняется следующее условие: rxr2 = r1r3. Таким образом, при полном уравновешивании искомая величина rx = r1r3/r2;

- метод измерений замещением – метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины. Пример: взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (метод Борда);

- метод совпадений – метод сравнения с мерой, в котором разность между измеряемой величиной и известной величиной, воспроизводимой мерой измеряют, используя совпадения отметок шкал. Пример: измерение с помощью штангенциркуля.

  1   2   3   4   5   6   7   8   9

Добавить документ в свой блог или на сайт

Похожие:

1. основные понятия в области метрологии iconВопросы по курсу метрология, стандартизация, сертификация
Объекты метрологии; цель, средства и основные задачи метрологии. Понятие о единстве измерений

1. основные понятия в области метрологии iconЗакон самарской области
Основные понятия, применяемые в настоящем Законе в области физической культуры и спорта

1. основные понятия в области метрологии iconСтатья Основные понятия, используемые в настоящем Федеральном законе
Для целей настоящего Федерального закона используются следующие основные понятия

1. основные понятия в области метрологии iconВведение Роль информационной деятельности в современном обществе Основные понятия
...

1. основные понятия в области метрологии iconВопросы для студентов
Цель практического занятия: дать студентам возможность полнее и содержательнее изучить основные понятия онтологии. Основные понятия...

1. основные понятия в области метрологии iconНа склад законов
Настоящий стандарт устанавливает основные понятия, термины и определения понятий в области надежности

1. основные понятия в области метрологии iconХайдеггер М. Основные понятия метафизики // Вопросы философии. 1989, № С. 116-122
Семинарское занятие Специфика философского познания: Мартин Хайдеггер, "Основные понятия метафизики"

1. основные понятия в области метрологии iconУчебно-методический комплекс 230700 «прикладная информатика» профиль...
Тема Основные понятия информационного менеджмента (ИМ): определения, основные понятия отрасли ит, цель, элементы, объекты и процессы...

1. основные понятия в области метрологии iconВопросы для подготовки к зачету по дисциплине
Основные понятия в области управления качеством. Международные стандарты исо серии 9000 на системы качества

1. основные понятия в области метрологии iconСеминар. «Великие реформы» Александра II. Основные понятия
Основные понятия: удельные крестьяне, частновладельческие крестьяне, «временнообязанные» крестьяне, выкупные платежи, мировые посредники,...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов