Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3




НазваниеУчебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3
страница10/16
Дата публикации19.08.2013
Размер2.04 Mb.
ТипДокументы
zadocs.ru > Физика > Документы
1   ...   6   7   8   9   10   11   12   13   ...   16


Примечание. (Pзаб—Рпл) - перепад давления к моменту начала освоения скважины; Ннач - фактическое расстояние от устья до уровня жидкости к моменту начала освоения скважины; Нст - статический уровень.

Видно, что во всех скважинах наблюдается принципиально одинаковая картина. После включения погружного насоса во всех случаях проходит ощутимый промежуток времени, прежде чем создаются гидродинамические предпосылки для возникновения притока из пласта. В скважинах с достаточным перепадом давления (Рзаб - Рпл), несмотря на начавшуюся откачку из скважины, продолжается некоторое время инфильтрация рабочего агента в пласт, и на участке от приема насоса до пласта поток является нисходящим. Следовательно, в такой категории скважин электродвигатель погружной установки в начальный момент освоения, несмотря на отсутствие притока из пласта обтекается потоком рабочего агента.

После прекращения инфильтрации жидкости в пласт скорость обтекания двигателя приближается к нулевой. Учитывая, что по многим скважинам, осваиваемым после подземного ремонта погружными электроцентробежными установками, период возможного "обмыва" двигателя нисходящим потоком рабочего агента достаточно велик, были проведены дополнительные исследования.

В этих исследованиях ставилась цель получить зависимость скорости обтекания двигателя от времени при освоении скважины с детализацией этой зависимости в начальные периоды.
3.2. Методика исследований

Для характеристики гидродинамики обтекания погружного электродвигателя целесообразней использовать величину не абсолютной скорости, а относительной:

(3.20

где - фактическая абсолютная скорость обтекания погружного двигателя; - номинальная абсолютная скорость обтекания; Qпл - расход жидкости, поступающей из пласта, или, наоборот, инфильтрующейся в пласт; Qном - номинальная производительность погружной электроцентробежной установки; Dном - номиналь,ный внутренний диаметр обсадной колонны; Dдв - внешний диаметр погружного двигателя.

Величина Qпл определяется на основе фактических замеров подачи насоса Q и динамики движения уровня жидкости в кольцевом пространстве в период освоения скважины:

(3.21)

где Hур(t) - расстояние от устья до уровня жидкости в кольцевом пространстве.
^ 3.3. Результаты исследований
На рис. 3.9. представлены результаты измерений и обработки по каждой скважине. На рисунках показаны динамика изменения уровня жидкости, замеренная волномером и относительная скорость обтекания, вычисленная по вышеприведенной методике. Учитывая многообразие форм приведенных графиков первоначально был проведен анализ по отдельным скважинам. Здесь подробно описаны данные по скважинам 6677 и 6984.

Скважина 6677. Согласно данным исследований скважины 6677 первоначально освоение проводилось при значительной недогрузке погружной электроцентробежной установки и насос развивал подачу в 20-50% номинальной, лишь после перефазировки двигателя производительность насоса стала соответствовать характеристике. Данные о динамике подачи насоса приведены в табл. 3.6.

Представленный на рис. 3.9. и в табл. 3.6. материал указывает на то, что в данной скважине условия работы погружного электродвигателя в начальные периоды освоения были неблагоприятными - в течение длительного времени относительная скорость обтекания была близка к нулевой.

Период после вторичного запуска установки (t >3,6 ч) характеризуется не только резким снижением уровня, но и интенсивным притоком из пласта. В результате чего, скорость потока в кольцевом пространстве между погружным двигателем и обсадной колонной резко возрастает и достигает величины на 20-30% превышающей номинальную (ŵ = 1,2-1,3).

Наличие максимума в приводимых на рис. 3.9. зависимостях при t ≈ 5ч можно объяснить различным характером изменения плотности по мере притока жидкости из пласта на участке от забоя до приема насоса и от приема насоса до уровня жидкости. Последний участок вследствие разделения фаз будет формироваться газоводонефтяной смесью с пониженной по сравнению с забойным участком плотностью.
Таблица 3.6

Подача насоса и плотность перекачиваемой жидкости в период освоения скв. 6677

Время, ч

Подача насоса, м3/сут

Плотность жидкости, кг/м3

Время, ч

Подача насоса, м3/сут

Плотность жидкости, кг/м3

0

-

-

3,75

338

1135

0,25

126

-

4,4

245

1088

1,1

83

1181

5,2

258

870

2.2

47

1181

5,8

243

870

3,3

Остановка

-

25

245

860

3,6

Пуск

-

-

-

-


Н
адо отметить, что в дальнейшем процесс сепарации газа приводит к росту давления в затрубном пространстве и оттеснению уровня. В данной скважине это наблюдается через 20-24 ч после начала освоения скважины (табл. 3.7). Таким образом зависимость Hур(t) в конечном счете имеет и другой экстремум (минимум). Анализируя зависимость w(t), следует отметить, что скорость обтекания погружного электродвигателя на средней и заключительной стадиях освоения высока и при выходе на режим соответствует номинальному значению.

Таблипа 3.7

Данные средней и заключительной стадий освоения скв. 6677

Время, ч

Hур, м

^ Давление в затрубном пространстве, МПа

Время, ч

Hур, м

Давление в затрубвом простравстве, МПа

3,9

625

0

6,25

673

0

4,25

708

0

24,3

710

0,95

4,75

776

0

25,1

725

0,95

5,25

724

0

25,5

726

0,95

5,75

696

0

-

-

-


Таким образом, освоение скв. 6677 характеризуется напряженными условиями работы ПЭД в начальной стадии; период работы ПЭД (Тн) с w ≤ 0,2 составляет около 3 ч - весь этот период погружной электродвигатель охлаждается потоком, имеющим скорость в 5 и более раз меньшую, чем wном.

Скважина № 6984. Начальная стадия освоения этой скважины отмечена двумя кратковременными остановками погружного насоса при t = 1,5 и 2,3 ч, а также одной длительной остановкой с t = 3 до t = 4,4 ч.

Из рис. 3.9. видно, что темп снижения уровня в затрубном пространстве до первой остановки погружного насоса достаточно высок, хотя производительность насоса в это время (табл. 3.8) невелика. Такое "несоответствие" объясняется ин-

Таблица 3.8

Подача насоса в период освоения скв. 6984

Время, ч

Подача насоса, м3/сут




Время, ч

Подача насоса, м3/сут




0

-

Пуск

2,9

143

-

1

29

-

2,95

-

Стоп

1,5

-

Стоп

4,4

-

Пуск

1,59

-

Пуск

5,0

67

-

2,0

86,8

-

5,1

170

-

2,3

-

Стоп

5,4

105

-

2,5

-

Пуск

6,0

101

-

2,7

134

-

24,0

102

-

фильтрацией жидкости в этом интервале времени в пласт. Это видно также из зависимости ŵ(t), согласно которой (см. рис. 3.9) продолжительность инфильтрации в пласт составляет около часа. Велико и значение периода слабого обтекания погружного электродвигателя (Tн = 2 ч).

Общим в освоении скв. 6677 и 6984 является значительная недогрузка погружной электроцентробежной установки в начальный период по производительности. Это обстоятельство является дополнительной причиной увеличения Tн.

Анализ и обработка экспериментального материала показывают, что существует вполне определенная взаимосвязь между тремя гидродинамическими показателями освоения скважин после их подземного ремонта: Tн, ΔР = Рзаб - Рпл, Vф. Из обобщающего рисунка 3.10 видно, что продолжительность периода слабого обмыва ПЭД - величина Tн - растет с увеличением ΔР и Vф.
Но при этом надо отметить, что представленный материал несколько меняет существующее представление о характере освоения скважин после подземного ремонта. Это выражается, главным образом, в том, что успешность освоения в большой степени определяется существующим к моменту начала освоения избытком забойного давления над пластовым. Судя по фактическим данным для рассматриваемых условий избыток в 1,5 - 2,0 МПа является критическим; при ΔР > (1,5 - 2,0) МПа резко возрастает продолжительность периода слабого обмыва ПЭД.

И
з вышесказанного следует, что при традиционной технологии освоения оперативность проведения подземного ремонта в некоторых случаях (при ΔР > ΔРкр) не может служить гарантией нормального режима обтекания погружного двигателя в начальный период.
Кроме того, режим обтекания может быть значительно улучшен, если начало освоения скважины после подземного ремонта будет смещено и перепад давления ΔР = Рзаб - Рпл к моменту начала освоения будет ниже критического. Но такая мера будет действенна лишь в том случае, когда фактический и расчетный объемы рабочего агента будут примерно одинаковы, а объем инфильтрующейся в пласт жидкости Vф при этом минимален. Только в этом случае отрицательный эффект от снижения фильтрационной характеристики призабойной зоны скважины может быть скомпенсирован положительным воздействием от снижения ΔР к началу освоения. По иному идет процесс освоения в скважинах, заглушенных. ГЭР (рис. 3.11). Ниже приведем результаты исследования скв. 1560, продукция которой содержит нефть угленосных отложений вязкостью 19,2 мПа-с в пластовых условиях. Процесс освоения этой скважины проходит практически без осложнений. Уже в первые 50 мин ŵ равна 0,5, а через 4,6 ч достигает 0,95. В динамике Hyp = f(t) и ŵ = f(t) можно выделить четыре зоны.

Первая зона (t1) представляет из себя процесс, когда включенный насос забирает жидкость с затрубного пространства и резко снижает уровень. Приток из пласта жидкости начинается более интенсивно через 12-15 мин и в точке t1[Hуp = f(t)] имет максимум. Основная жидкость из затрубного пространства к этому моменту откачана и на прием насоса начинает поступать пластовая жидкость. Ввиду различия плотностей продукции пласта и задавочной жидкости насос,. как правило, меняет свою характеристику в сторону снижения, которое продолжается до выравнивания плотностей до приёма насоса и в затрубном участке.

С точки t2 (вторая зона) над приёмом насоса начинает накапливаться нефтяная фаза, плотность которой практически. равна плотности нефти в пластовых условиях. Этот процесс продолжается до точки t3 (третья зона). С момента t3 до t4 (четвертая зона) идет выравнивание системы пласт-насос-подъёмник и система переходит на "условно стационарный режим" работы. Аналогичный процесс происходит и в других исследованных скважинах.
1   ...   6   7   8   9   10   11   12   13   ...   16

Похожие:

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс информация о дисциплине
Транспортное право: учебно-методический комплекс (информация о дисциплине, рабочие учебные материалы, информационные ресурсы дисциплины,...

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс Блок контроля освоения дисциплины
Информатика: учебно-методический комплекс (блок контроля освоения дисциплины: методические указания к выполнению курсовой работы;...

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс «История экономических учений и управленческой мысли»
Учебно-методический комплекс утвержден на заседании кафедры экономики и финансов. Протокол № от

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс удк 342 ббк
Учебно-методический комплекс предназначен для студентов государственно-правовой специализации

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс по курсу «прогнозирование и планирование экономики»
Учебно-методический комплекс подготовили: доцент, к э н. Трушин Ю. М., ассистент Гаркавая В. Г

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс институты
Техника транспорта, обслуживание и ремонт: учебно-методический комплекс / сост. Л. Л. Зотов, С. Е. Иванов. Спб.: Изд-во сзту, 2009....

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс по дисциплине «цены и ценообразование»
Учебно-методический комплекс обсужден и утвержден на заседании кафедры налогов и таможенного дела (протокол №3 от 18 октября 2010...

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс по дисциплине «Экономическая теория»
Учебно-методический комплекс предназначен для самостоятельной работы студентов экономического факультета дневной формы обучения

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс учебной дисциплины психология делового общения 100200. 62 «Туризм»
Учебно-методический комплекс одобрен методической комиссией факультета социального управления

Учебно-методический модуль №4 «эксплуатация скважин» учебно-методический блок №3 iconУчебно-методический комплекс дисциплины «Международное право»
Учебно-методический комплекс составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов