Г. М. Казаков Тепломассообмен




НазваниеГ. М. Казаков Тепломассообмен
страница6/27
Дата публикации24.02.2014
Размер1.23 Mb.
ТипДокументы
zadocs.ru > Физика > Документы
1   2   3   4   5   6   7   8   9   ...   27
^

3. Теплопроводность при стационарном режиме




3.1. Дифференциальное уравнение теплопроводности



Если в дифференциальном уравнении энергии (2.4) скорость и ее проекции на координатные оси приравнять нулю, то уравнение будет описывать только микроскопический перенос тепловой энергии, который мы назвали ранее теплопроводностью. Тогда дифференциальное уравнение нестационарной теплопроводности можно записать в виде

(3.1)

При отсутствии внутренних источников тепла qV = 0 дифференциальное уравнение нестационарной теплопроводности имеет вид

(3.2)

Если имеются внутренние источники тепла, но температурное поле соответствует стационарному состоянию, то дифференциальное уравнение стационарной теплопроводности превращается в уравнение Пуассона

(3.3)

Наконец, при стационарной теплопроводности и отсутствии внутренних источников тепла выражение (3.3) принимает вид уравнения Лапласа

(3.4)

Каждое из дифференциальных уравнений теплопроводности (3.1) – (3.4) имеет бесчисленное множество решений. Чтобы из этого множества выделить конкретное решение, необходимо к дифференциальному уравнению присоединить дополнительные условия. Эти условия получили название краевых условий, или условий однозначности.

^

3.2. Краевые условия для процессов теплопроводности



Частные особенности, которые совместно с дифференциальным уравнением дают полное математическое описание конкретного процесса теплопроводности, включают в себя:

1) геометрические условия, по которым задаются в конкретной задаче форма и размеры тела, в котором протекает процесс теплопроводности;

2) физические условия, по которым задаются физические свойства материала (плотность, коэффициент теплопроводности и т.п.) тела, а также закон распределения внутренних источников теплоты;

3) начальные условия состоят в задании для нестационарных процессов теплопроводности поля температуры внутри тела в начальный момент времени

T=f (x, y, z) при =0;

4) граничные условия могут быть заданы несколькими способами.

Граничные условия первого рода состоят в задании значений температуры в точках границы тела, внутри которого разыскивается поле температуры

TC=f (xГ, yГ, zГ),

где TC – температура на поверхности тела;

xГ, yГ, zГ – координаты точек поверхности тела.

В частном случае температура в точках границы тела может быть постоянной TC = const в течение всего процесса теплопроводности.

Граничные условия второго рода состоят в задании значений плотности теплового потока в точках границы тела, внутри которого разыскивается поле температуры

qC=f (xГ, yГ, zГ).

В простейшем случае плотность теплового потока на поверхности тела и во времени остается постоянной qC = const.

Граничные условия третьего рода состоят в задании в точках границы тела связи между значениями плотности теплового потока и температуры. Эта связь представляет собой закон теплоотдачи Ньютона-Рихмана

qC = (TC – ТЖ). (3.5)

При этом задаются температура окружающей тело жидкости ТЖ вдали от него и коэффициент теплоотдачи  на границе тела и омывающей его жидкости. Величины qC и TC при этом не заданы, являясь искомыми величинами. По закону сохранения энергии количество теплоты, которое отводится с единицы поверхности в единицу времени, вследствие теплоотдачи должно равняться количеству теплоты, подводимому к единице поверхности в единицу времени вследствие теплопроводности из внутреннего объема тела, т.е. по закону Фурье

(3.6)

где n – нормаль к поверхности тела; индекс «с» указывает на то, что температура и градиент температуры относятся к поверхности тела (при n=0).

1   2   3   4   5   6   7   8   9   ...   27

Похожие:

Г. М. Казаков Тепломассообмен iconПрограмма развития станицы «средней» новочеркасского казачьего округа на период 2012-2017 г г
«Станица «Средняя» это добровольное объединение казаков, поставивших своей главной целью обеспечение достойной жизни казачьего народа...

Г. М. Казаков Тепломассообмен iconСписок клубов, подавших заявки на участие в IX всероссийском фестивале...
Всероссийском фестивале военно-исторических клубов, посвященном Азовскому осадному сидению донских казаков 1641 года

Г. М. Казаков Тепломассообмен iconПрограмма государственного экзамена по специальности эпр техническая...
Предмет и метод термодинамики. Термодинамическая система и параметры состояния. Термодинамический процесс. Первый закон термодинамики....

Г. М. Казаков Тепломассообмен iconКак появилось казачество?
...

Г. М. Казаков Тепломассообмен iconСписок художественной и учебной литературы фж очное отделение 2013 год
Ю. Казаков Плачу и рыдаю, Осень в дубовых лесах, Адам и Ева, Во сне ты горько плакал и другие

Г. М. Казаков Тепломассообмен iconПрограмма конференции 25 26 февраля 2013 г. Понедельник 25 февраля
...

Г. М. Казаков Тепломассообмен iconВопросы к роману М. А. Шолохова «Тихий Дон»
Картины жизни донских казаков на страницах романа. «Мысль семейная» в романе «Тихий Дон»

Г. М. Казаков Тепломассообмен iconТрадиции и обычаи казаков
За годы лихолетья и уничтожения казачества изрядно выветривались и исказились под чуждым влиянием эти понятия. Даже наши старики,...

Г. М. Казаков Тепломассообмен iconН. В. Ермакова реликвии казаков черноморского войска участников войны 1812 года
...

Г. М. Казаков Тепломассообмен iconОбычаи, традиции, нравы казаков
За годы лихолетья и уничтожения казачества изрядно выветривались и исказились под чуждым влиянием эти понятия. Даже наши старики,...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов