Химический состав сухого воздуха тропосферы




Скачать 232.77 Kb.
НазваниеХимический состав сухого воздуха тропосферы
Дата публикации02.03.2014
Размер232.77 Kb.
ТипДокументы
zadocs.ru > Химия > Документы

ЄКОЛОГИЯ

Содержание, об. %

Газ

Содержание, об %










78,09

Kr

1,0∙10–4

20,95

CH4

1,4∙10–5

0,93

H2

5,0∙10–6

0,03

Xe

8,0∙10–5

1,8∙10–4

NOx

5,0∙10–5

5,24∙10–4

O3

1,0∙10–6

Таблица 10.1

Химический состав сухого воздуха тропосферы *)

^ Химические процессы в тропосфере

В тропосфере температура воздуха с высотой уменьшается в среднем на 0,5 °C на 100 м. Область от 20 до 150 км называют хемосферой, ибо в ней протекает большинство фотохимических процессов; часть атмосферы от 100 до 400 км называют ионосферой, поскольку здесь господствует ионизация, а еще выше – и диссоциация многих компонентов атмосферы.

Современная атмосфера сформировалась около 2 млрд лет назад и поддерживается биогенными процессами.

З



Рисунок 10.4

Леса – это «легкие планеты»


а последние 100 лет изменение атмосферы составило по кислороду *) 0,01–0,02 % в сторону уменьшения. За последние 50 лет в среднем количество кислорода ежегодно уменьшается на 10 млрд т, и его использовано столько же, сколько за последний миллион лет. Это во многом связано с техногенной деятельностью человека. Так, пробег автомобиля от Москвы до Санкт-Петербурга требует такого объема кислорода, который необходим для дыхания человека в течение года. Действительно, при сжигании 1 л бензина в двигателе внутреннего сгорания расходуется до 1,5 кг кислорода, если углеводородное горючее сгорает до CO2 и H2O. К сожалению, часть горючего при переходных режимах работы двигателя сгорает не полностью или окисляется только до CO. Автомобильный транспорт служит основным источником загрязнения воздуха больших городов и прилегающих территорий. Поскольку на одну весовую часть горючего приходится до 15 весовых частей воздуха, то кроме CHx и CO в атмосферу выбрасываются продукты окисления атмосферного азота, в основном NO и NO2.

*) Масса кислорода в современной атмосфере составляет 1,5 ∙ 1015 т.

Некоторые сорта бензина содержат в качестве антидетонационной добавки тетраэтилсвинец Pb(C2H5)4. Поэтому и по сию пору автомобильный выхлоп служит основным источником загрязнения атмосферы свинцом и его соединениями. В промышленных районах и вдоль дорог содержание свинца в 25–30 раз больше, чем в сельской местности.

Твердое топливо, особенно низкосортные каменные угли и некоторые мазуты, при сжигании загрязняет атмосферу оксидами серы SOx, если не использовать химические поглотители. Так, обработка токсичных газов гашеной известью или известняком позволяет поглотить до 90 % SO2



















Нарушение кислородного баланса связывают с уменьшением площади «легких планеты», вызванным нерациональной вырубкой лесов Сибири и Южной Америки, загрязнением мирового океана.

В тропосфере фотохимические процессы ограничены реакцией 












Возбужденные молекулы, теряя энергию при столкновении с другими молекулами, повышают температуру тропосферы примерно на 20°. Повышение содержания CO2 лежит в основе парникового эффекта.

В нижних слоях атмосферы процессы с участием солнечного излучения и продуктов автомобильных выхлопов обусловливают образование «фотохимического смога», основу которого составляет пероксоацетилнитрат (ПАН).

Смог начинает развиваться с появлением первичных продуктов, загрязняющих атмосферу, которые сами по себе могут быть неядовитыми и неактивными в химическом отношении.

Атмосфера постоянно пополняется газами биохимического происхождения, образующимися при разложении микроорганизмами продуктов растительного и животного происхождения: CH4 и другие углеводороды, CO2, N2, H2S, H2, O2. Под воздействием на горные породы высоких температур и давлений в атмосферу поступают газы химического происхождения (CO2, H2S, H2, CH4, CO, N2, HCl, HF, NH3, SO2), а также продукты вулканического происхождения и, наконец, газообразные продукты радиоактивного распада (He, Ar, Kr, Xe, Rn).

 Химия атмосферы

Масса атмосферы составляет 9∙10–5 % от массы Земли; ее состав приведен в табл. 10.1. На рис. 10.2 схематически изображено ее строение до высоты 100 км. Выше 100 км примерно до 1000 км простирается экзосфера, ниже – термосфера (85–100 км), мезосфера (50–85 км), стратосфера (10–50 км), и самый нижний слой составляет тропосферу (до 10 км). 90 % массы всей атмосферы сосредоточено в слое до 16 км, выше 100 км находится одна миллионная часть всей массы атмосферы.

Газ

Содержание, об. %

Газ

Содержание, об %

N2

78,09

Kr

1,0∙10–4

O2

20,95

CH4

1,4∙10–5

Ar

0,93

H2

5,0∙10–6

CO2

0,03

Xe

8,0∙10–5

Ne

1,8∙10–4

NOx

5,0∙10–5

He

5,24∙10–4

O3

1,0∙10–6




^ Таблица 10.1

Химический состав сухого воздуха тропосферы *)


*) Средняя молекулярная масса сухого воздуха равна 28,97.




Рисунок 10.2

Строение атмосферы







Рисунок 10.3

Зависимость температуры атмосферы от высоты



^


10.1. Загрязнение окружающей среды


Д



Рисунок 10.1

За последние 100 лет загрязнение окружающей среды значительно возросло


о появления жизни на Земле протекали только геохимические процессы, которые сводились к разрушению первичных минералов под воздействием температурных перепадов и воды с последующей миграцией продуктов разрушения, и синтез новых минеральных образований при участии первичной атмосферы. Химические соединения геохимически были связаны миграционными процессами, происходящими в литосфере, гидросфере и атмосфере в большой геохимический круговорот (БГК). До зарождения жизни он носилабиотический характер, а основными его факторами были энергия Солнца и геохимическое воздействие воды.

Возникновение жизни на Земле не только сформировало биосферу, но и привело к новому типу перемещения химических элементов – биогенной миграции, называемой также биогеохимическим циклом (БГХЦ). Промышленный этап развития человечества сопровождается настолько интенсивными воздействиями на БГХЦ, что техногенная составляющая стала причиной гибели огромного числа видов флоры и фауны, появления многочисленных заболеваний у людей, животных и других представителей биосферы.

С естественными загрязнениями природа справляется лучше, чем с техногенными. Последние в первую очередь воздействуют на атмосферу и гидросферу, а горнорудная и газонефтяная промышленность, непосредственно воздействуя на литосферу, в конечном итоге отравляет воздушные бассейны промышленных центров, изменяет химический состав рек, озер и мирового океана в целом. Таким образом, антропогенное воздействие на атмосферу, гидросферу, литосферу и биосферу принимает планетарные масштабы и требует от мирового сообщества активной борьбы за сохранения среды обитания не только человека, но и всего живущего на Земле.

10.2.2. Химические процессы в стратосфере и ионосфере

В стратосфере фотохимические процессы более разнообразны. Во-первых, это образование O3, концентрация которого по сравнению с тропосферой возрастает в 200 раз и достигает 100 млн–1 **). Молекулы O3 очень неустойчивы, хотя постоянно образуются под действием солнечного излучения в диапазонах 135–176 нм и 240–260 нм по реакциям: 









где M – какая-нибудь третья частица (N2, CO2, Ar).

**) млн–1 – миллионная доля, определяющая число частиц, приходящихся на миллион частиц.

Разрушение озона связано с реакциями O3 + O → O2 + O2 или O3→ O2 + O (ν = 200–300 нм).

Эти реакции поддерживают динамическое равновесие образования и распада O3 в естественных условиях.

Последняя фотохимическая реакция защищает биосферу от губительного для нее ультрафиолета.



Рисунок 10.5

Динамика размеров озоновой дыры над Антарктидой

Антропогенное воздействие на озонный слой обусловлено следующими цепными реакциями:

1. Выбросы высотных самолетов и ракет 



























































2. Фреоны (hν = 175–220 нм) 





























Свободные атомы Cl взаимодействуют с озоном, способствуя разрушению озонового слоя: 









В ионосфере на высоте выше 80 км происходят реакции фотоионизации: 












Эти молекулярные ионы вступают в ион-молекулярные реакции; переход в основное состояние этих частиц является причиной северных сияний. Эти реакции дополняются еще реакциями перехода возбужденных атомов и молекулярных ионов в основное состояние: O* → O + hν (зеленая и красная области) и * → +hν (фиолетовая и синяя области).

Химия гидросферы

Особенности гидросферы определяются особенностями воды: ее физические свойства обусловлены химическим строением.

Вода H2O на 99,73 % состоит из 1H216O, но в природе встречается еще дейтерий (стабилен) 2D и тритий (3T, –β), а если принять во внимание, что кроме 16O есть еще 17O и 18O, то в природе встречается девять разновидностей воды.

Жидкая вода имеет максимальную плотность при 4 °С (принята за единицу), а переход в твердое состояние, сопровождающийся изменением упаковки молекул, понижает плотность до 0,9. Это обстоятельство (лед плавает) и малая теплопроводность льда во многом способствуют стабилизации процессов в гидросфере.



Рисунок 10.6

Большую часть Земли покрывает вода

Все свойства воды обусловлены наличием двух неподеленных электронных пар у атома кислорода, атомные орбитали которого гибридизированы по sp3-типу, и способностью атомов водорода соседних молекул образовывать с этими неподеленными электронными парами достаточно прочные водородные связи. В результате как жидкая, так и кристаллическая вода (лед) оказываются хорошо структурированными, хотя число локальных нарушений дальнего порядка при плавлении возрастает.

Экспериментально установлено, что протон в воде может быть только гидратированным. Гидратация не исчерпывается реакцией H+ + H2O = H3O+. Последовательно может присоединиться несколько молекул воды: 












Исходя из постоянства произведения ионов H+ и OH, образующихся при диссоциации H2O = H+ + OH, важнейшим критерием поддержания жизнеспособности условий в воде и почве является узкий интервал изменений водородного показателя (pH) в пределах 6–9. В природной воде прежде всего растворяются газы атмосферы: O2, N2 (рис. 10.7) и CO2.



Рисунок 10.7

Растворимость N2 и O2 воздуха и чистых азота и кислорода при атмосферном давлении.

Хотя растворимость кислорода в два раза больше растворимости азота, но из-за большего парциального давления (78 %) в природной (дождевой) воде азота растворено в два раза больше, чем кислорода. Минерализация воды приводит к уменьшению растворимости воздуха. Так, при 0 °С растворимость кислорода (чистого) составляет 49 мл/л, а морской воде только 15 мл/л. Необходимое для окисления растворимых в воде веществ количество кислорода называется биохимической потребностью в кислороде (БПК).

Так, чистая вода, вытекающая из-под ледников, имеет БПК < 1 млн–1, пригодная для питья – < 5 млн–1, а канализационная – 100–500 млн–1.

Большую проблему создают попадающие в водоемы нитраты и фосфаты, поскольку они при неумелом использовании вызывают заболевание малопроточных водоемов и прудов.

Растворение CO2 в воде сопровождается химическим взаимодействием с установлением равновесия: 












K1 = 4,5 · 10–7K2 = 5,6 · 10–11.

Обычные методы измерения констант диссоциации не позволяют отличить растворенный CO2 от H2CO3 в растворе. Так как равновесие устанавливается быстро, то за контанту равновесия этой реакции Kравн = [H2CO3] / [CO2]∙[H2O] обычно принимают первую константу диссоциации угольной кислоты (K1 = 4,5 · 10–7). Вместе с тем найдено, что H2CO3 / CO2 = 0,0037; это означает, что только 0,37 % растворенного CO2 находится в виде H2CO3. Если бы весь растворенный CO2находился в виде H2CO3, то K1 = 1,8 · 10–4, что позволяет отнести H2CO3 к умеренно сильным кислотам. Практически из-за быстрого установления равновесия гидратации CO2 приходится пользоваться не действительной константой диссоциации K1 = 1,8 · 10–4, а кажущейся K1 = [H+]∙[H2CO3] / CO2 = 4,5 ∙ 10–7, относящейся к реакции CO2 ∙ H2O = H+ + HCO3.

Другим источником поступления карбонат- и бикарбонат-ионов являются карбонаты:

  временная жесткость воды (устраняется кипячением)

Равновесие, устанавливающееся между H2CO3 и гидрокарбонат-ионом, определяет буферную емкость природных вод, что очень важно для поддержания постоянства в них pH.

PH почвенных вод может колебаться от 3 до 10. Однако кислотность почв, благоприятных для произрастания растений, мало отличаются от pH = 6. Морские организмы еще более чувствительны к pH среды обитания. Океаническая вода имеет pH = 8, а pH прибрежных вод ≈ 9. При pH < 7,5 многие морские организмы погибают. При pH < 7,0 морские организмы уже не в состоянии образовывать карбонатные скелеты.

Следует отметить, что произведение растворимости CaCO3 в морской воде при 20 °С более чем в 100 раз превышает таковое в пресной воде из-за влияния других ионов. А произведение концентраций [ ]∙[] на глубинах до 1 км превышает  что предопределяет способность некоторых морских организмов извлекать растворенный  для построения раковин и скелетных тканей.

С глубиной концентрация Ca2+ снижается, что способствует растворению CaCO3, составляющего основу раковин и скелетных тканей отмерших организмов.

Кроме  и  морская вода содержит катионы  и анионы  определяющие ее соленость (S). За величину солености принят вес сухого остатка после упаривания 1 кг морской воды и перевода карбонатов в оксиды, бромидов, иодидов в хлориды, а органические вещества сожжены при 480 °C. Соленость измеряется в г/кг или промилле (‰).



Рисунок 10.8

Атлантический океан

Мировой океан содержит до 1017 тонн минерального сырья, включая серебро (5∙1010 т), золото (1,1∙107т).

Фитопланктон мирового океана продуцирует почти столько же кислорода, что и все зеленые растения суши.

Промышленные выбросы, попадая в воду, влияют не только на pH, но и на содержание анионов и растворимость газов, приводя иногда к гибели основных видов флоры и фауны в нем. Наиболее опасными загрязнителями являются стронций, кадмий, свинец и особенно ртуть. Последняя может переходить в диметил-ртуть, которая, попадая с пищей (рыбой), воздействует на центральную нервную систему, вызывая психические и другие расстройства (болезнь Минимата).

Минералогический состав пресной воды определяет ее жесткость (устранимую и постоянную), что требует специальной обработки перед использованием в нагревательных системах для предотвращения образования накипи.

Наилучшим решением промышленного водоснабжения является организация замкнутых водооборотных систем, полностью исключающих сброс в водоемы сточных вод.

^ 10.4. Химия литосферы

Толщина литосферы колеблется в пределах 10–100 км; 10–20 км над океанами, 35–50 км над материками, 70–80 км над горными массивами; масса литосферы составляет 0,3–0,4 % от массы Земли.

Верхние слои осадочного подслоя литосферы (до 2–3 км) называют литобиосферой. Толщина осадочного слоя может достигать 20 км, ниже расположены гранитный (до 40 км) и базальтовый (ниже 40 км) подслой (рис. 10.9).



Рисунок 10.9

Cхематическое строение Земли

В земной коре преобладают восемь элементов: кислород, кремний, алюминий, железо, кальций, натрий, калий, магний. На долю кислорода приходится почти половина массы земной коры. Распространенность химического элемента с ростом его порядкового номера заметно убывает. Наиболее распространенными являются элементы с порядковыми номерами до 28. Самые распространенные изотопы отнонсятся к типу 4n16O, 24Mg, 40Ca, 56Fe, 88Sr, 92Zr, 120Sn, 208Pb. Они составляют 86,3 % массы земной коры, изотопы 4n + 3 – 12,7%, а 4n + 1 и 4n + 2 – менее 1 %.

Все элементы земной коры согласно геохимической классификации делятся на пять групп: литофильные, халькофильные, сидерофильные, атмофильные и биофильные (табл. 10.2).

Литофильные

Халькофильные

Сидерофильные

Атмофильные

Биофильные

Li, Be, B, O, F, Na, Mg, Al, Si, Cl, K, Ca, Sc, Mn, V, Ge, Br, Rb, Sr, Y, Mo, I, Cs, Ba, La, Ln, Ac, Th, U.

S, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Mo, Rh, Pd, Ag, Cd, In, Sb, Te, Hg, Tl, Pb, Bi.

C, P, Fe, Co, Ni, Ge, Mo, Ru, Rh, Pb, Sn, Ta, Re, Os, Ir, Pt, Au.

H, C, N, O, He, Ne, Ar, Kr, Xe, Rn.

H,C, N, O, P, S, Na, Mg, K, Ca, V, Mn, Fe, Co, Cu, Zn, Mo, Cl, Br, I, F, Si.




Таблица 10.2

Геохимическая классификация элементов

Литофильные элементы входят в состав силикатных, алюмосиликатных горных пород, образуют сульфатные, карбонатные, фосфатные, боратные и галогенидные минералы.

Халькофильные элементы образуют многочисленную группу сульфидных и теллуридных минералов. Они могут встречаться в самородном состоянии.

Сидерофильные элементы составляют большую часть полиметаллических руд, образуемых многими d- и f-элементами. Они тесно перемежаются с элементами, обнаруживая повышенное сродство к сере, мышьяку, а также фосфору, углероду и азоту.

Атмофильные элементы составляют основу земной атмосферы. За исключением водорода и углерода в атмосфере они находятся в виде простых соединений.

Биофильные элементы – это так называемые элементы жизни. Они делятся на макробиогенные (H, C, N, O, Cl, Br, S, P, Na, K, Mg, Ca) и микробиогенные (V, Mn, Fe, Co, Cu, Zn, B, Si, Mo, F).

^ . Техногенное воздействие на литосферу

Антропогенная деятельность приводит к заметному воздействию на некоторые участки литосферы, включая высочайшие горные вершины. Это приводит к эрозии и засорению почв, перераспределению минерального сырья при горнопромышленной деятельности. Особую опасность представляют добыча, производство и переработка радиоактивных материалов. Под воздействием сельскохозяйственной и промышленной деятельности эрозия почвы происходит в 100–1000 раз быстрее, чем в природных условиях. За последние годы потеряно 2 млрд га плодородных земель, что составляет более четверти сельскохозяйственных угодий. Города, дороги, промышленные сооружения уже вывели из землепользования 50 млн га (площадь Франции).

Природопреобразующая деятельность оказывает экологически опасное перераспределение вещества Земли – извлечение из недр и переработку огромного количества минерального сырья и углеводородного (твердого, жидкого и газообразного) топлива. При транспортировке, эксплуатации и переработке теряется значительная часть добытого. Так, при добыче каменного угля извлекается на поверхность огромное количество пустой породы, складируемой в террриконы. Большинство терриконов, содержащих и каменноугольные включения, тлеющие. На одну тонну калийного и фосфатного удобрения приходится соответственно 4 и 4,25 т отходов.






Модель 10.1. Круговорот воды и загрязнение окружающей среды

Промышленные и бытовые отходы являются глобальными проблемами современного состояния взаимоотношений человек-природа. Техногенная цивилизация находится у опасной черты, переход через которую грозит самому существованию на Земле человека как части природы. Поэтому перед человечеством стоит задача оптимизации техногенного преобразования природных систем. И на начальном этапе создания природосберегающих технологий, в частности малоотходных производств, в которых отходы одного производства служат сырьем для другого. Основными принципами таких технологий должны быть комплексная переработка сырья и энергосбережение, замкнутые водо- и газооборотные системы, рациональное кооперирование, минимизация отходов и исключение неконтролируемых выбросов. Все это требует больших затрат и пока доступно только немногим промышленно развитым странам.

^ Биосферные процессы и экология

Биосфера представляет оболочку Земли, включающую в себя как область распространения живого вещества, так и само это вещество.

Вернадский показал, что ведущим фактором, преобразующим лик Земли, является жизнь. В современном понимании биосфера Земли представляет собой открытую систему со своими «входом» и «выходом».

Блок-схема биосферной системы представлена на рис. 10.10.



Рисунок 10.10

Блок-схема биосферной системы

Организация любой системы зависит от числа ее компонентов и их иерархии. Каждая система имеет несколько уровней организации. Биосфера является наиболее сложной и высокоорганизованной системой.

Современное состояние любой природной системы рассматривается как определенная стадия развития в процессе ее эволюционирования. В современном понимании биосфера Земли – глобальная открытая саморегулирующаяся система, работающая на солнечной энергии. Продукты жизнедеятельности в конечном итоге имеют выход в геологию, т. е. на время выводятся из биосферного круговорота. Саморегулирование биосферы Земли обеспечивается живыми организмами. Биосферу можно рассматривать как кибернетическую систему, которая только тогда обладает устойчивостью для блокирования внешних и внутренних возмущений, когда она имеет достаточное внутреннее разнообразие.

Вещественное и энергетическое взаимодействие всех составляющих биосферу частей между собой и окружающей средой составляет основу экологии. Наиболее значимой частью экологии является техно-, по сути, антропогенная экология. Место экологии в современном естествознании схематически показано на рис. 10.11.



Рисунок 10.11

Место экологии в естествознании

Для оптимального природопользования оценивают экологическое качество среды (в условных единицах). Точкой отсчета для оценки изменений служит некоефоновое состояние природной среды, которое не подвержено локальным антропогенным воздействиям. С экологических позиций антропогенное воздействие (тепловое, акустическое, световое, химическое, радиационное) создает помехи, которое повышает фоновое состояние (стандарт). Эти антропогенные помехи в отличие от естественых ведут не к отбору, а к угнетению и гибели организмов.

В основу стратегии развития биосферы положены следующие принципы:

  1. Технический прогресс не только желателен, но и жизнено необходим.

  2. Народонаселение и ресурсы не могут расти беспредельно.

  3. Оптимальная емкость среды неизвестна.

  4. Создания социально-экономического механизма гомеостаза в системе «человек–природа».

  5. Соблюдение законов оптимальности.



Добавить документ в свой блог или на сайт

Похожие:

Химический состав сухого воздуха тропосферы iconРеспублики Беларусь Учреждение образования «Гомельский государственный...
А. А. Вшивков. – Гомель : ггту им. П. О. Сухого, 2008. – 45 с. – Систем требования

Химический состав сухого воздуха тропосферы iconРеспублики Беларусь Учреждение образования «Гомельский государственный...
Рецензент: канд техн наук, доц каф. «Электроснабжение» ггту им. П. О. Сухого О. Г. Широков

Химический состав сухого воздуха тропосферы iconДыхание организмов, его сущность и значение. 3
Химический состав клетки. Роль воды и неорганических веществ в жизнедеятельности клетки. 5

Химический состав сухого воздуха тропосферы icon2 взаимодействие биологического и костного вещества: состав воздуха,...
Взаимодействие биологического и костного вещества: состав воздуха, воды, происхождение почвы, их биологическая регуляция

Химический состав сухого воздуха тропосферы icon2. Фильтрование воды является физическим процессом, т к. протекает...
Кипение воды протекает без изменения химического состава веществ это фазовый переход воды из жидкого состояния в газообразное, т...

Химический состав сухого воздуха тропосферы icon1. Химический состав и природа белков
Уже первые химические анализы белков показали, что, независимо от источника получения, белковые вещества содержат, кроме С, о и Н,...

Химический состав сухого воздуха тропосферы iconХимический состав топинамбура
Топинамбур, или Подсолнечник клубненосный — вид клубненосных растений из рода Подсолнечник семейства Астровые. Растение известно...

Химический состав сухого воздуха тропосферы iconРассказать, как классифицируются текстильные волокна. Что называется волокном?
Каков химический состав и строение хлопка? Рассказать о свойствах хлопка, особенностях при пошиве

Химический состав сухого воздуха тропосферы iconСебя, о н понял бы причину своего нездоровья. Так
Ведь печень – первый фильтр крови, и если он наполнен паразитами, кровь станет средой их обитания и транспортировки, изменяя свой...

Химический состав сухого воздуха тропосферы iconВопрос Биосфера и географическая оболочка
Биосфера оболочка Земли, где распространена жизнь, существует "живое вещество",определяющее химический состав и энергетические процессы...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов