Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003




НазваниеКонспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003
страница1/9
Дата публикации18.11.2013
Размер1.55 Mb.
ТипКонспект
zadocs.ru > Информатика > Конспект
  1   2   3   4   5   6   7   8   9
Министерство образования российской федерации

Воронежский государственный технический университет


Чижов М. И., Юров А.Н.


Информатика и

информационные системы
Конспект лекций
Утверждено Редакционно-издательским советом в качестве конспекта лекций

Воронеж 2003



УДК658.012
Чижов М.И., Юров А.Н. Информатика и информационные системы: Конспект лекций. Воронеж: Воронеж. гос. техн. ун-т, 2003. 148 с.

Конспект лекций соответствует требованиям Государственного образовательного стандарта высшего профессионального образования по направлению "Информатика и вычислительные системы" для студентов специальности 120200 "Металлорежущие станки и инструменты" дневной и вечерней форм обучения и специальности 2101 "Автоматизация технологических процессов и производств" естественно-технического колледжа дневной и заочной форм обучения

В работе содержатся основные положения и базовые понятия по работе с ЭВМ, рассматриваются различные элементы и структуры архитектуры персонального компьютера. Приведены многочисленные примеры и рассмотрен ход решения типовых задач на алгоритмическом языке Паскаль, подробно изучена теория основ по работе с Компас-График.

Конспект лекций подготовлен на магнитном носителе в текстовом редакторе MS Word и содержится в файле Inf.doc.
Рецензенты: кафедра технологии конструкционных материалов Воронежской государственной лесотехнической академии (зав. кафедрой, доцент А. Г. Высоцкий)

канд. техн. наук, доцент Ю.С. Ткаченко
Ответственный за выпуск зав. кафедрой д-р техн. наук, профессор В.М. Пачевский

Издается по решению редакционно-издательского совета Воронежского государственного технического университета
© Чижов М.И. Юров А.Н., 2003

© Оформление. Воронежский

государственный технический

университет, 2003

Введение
В настоящее время человека все сильнее охватывают информационные потоки, и компьютер становится неотъемлемой частью нашей жизни. Интернет и мультимедийные технологии стали неизбежными спутниками и проводниками информации. Данные тенденции постоянно развиваются, облегчая доступ к базам данных и материалам, созданным человечеством. В работе и дома, в школе и ВУЗе, на персональных ЭВМ решаются самые разнообразные задачи.

В науке и технике проектируются на компьютере устройства, которые в будущем входят в обиход. Поэтому знание компьютера является на данный момент необходимым атрибутом для успешной работы и отдыха в повседневной жизни.

Тема 1. Предмет информатики. Понятие информации.

Термин "информатика" (франц. informatique) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика". Широко распространён также англоязычный вариант этого термина — "Сomputer science", что означает буквально "компьютерная наука". Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы её создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности. В 1978 году международный научный конгресс официально закрепил за понятием "информатика" области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая компьютеры и их программное обеспечение, а также организационные, коммерческие, административные и социально-политические аспекты компьютеризации — массового внедрения компьютерной техники во все области жизни людей. Инфоpматика — комплексная научная дисциплина с широчайшим диапазоном применения. Её приоритетные направления:

  • pазpаботка вычислительных систем и пpогpаммного обеспечения;

  • теоpия инфоpмации, изучающая процессы, связанные с передачей, приёмом, преобразованием и хранением информации;

  • математическое моделирование, методы вычислительной и прикладной математики и их применение к фундаментальным и прикладным исследованиям в различных областях знаний;

  • методы искусственного интеллекта, моделирующие методы логического и аналитического мышления в интеллектуальной деятельности человека (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);

  • системный анализ, изучающий методологические средства, используемые для подготовки и обоснования решений по сложным проблемам различного характера;

  • биоинформатика, изучающая информационные процессы в биологических системах;

  • социальная информатика, изучающая процессы информатизации общества;

  • методы машинной графики, анимации, средства мультимедиа;

  • телекоммуникационные системы и сети, в том числе, глобальные компьютерные сети, объединяющие всё человечество в единое информационное сообщество;

  • разнообразные пpиложения, охватывающие производство, науку, образование, медицину, торговлю, сельское хозяйство и все другие виды хозяйственной и общественной деятельности.

Технические средства, или аппаратура компьютеров, в английском языке обозначаются словом Hardware, которое буквально переводится как "твердые изделия". Для обозначения программных средств, под которыми понимается совокупность всех программ, используемых компьютерами, и область деятельности по их созданию и применению, используется слово Software (буквально — "мягкие изделия"), которое подчеркивает равнозначность самой машины и программного обеспечения, а также способность программного обеспечения модифицироваться, приспосабливаться и развиваться. Программированию задачи всегда предшествует разработка способа ее решения в виде последовательности действий, ведущих от исходных данных к искомому результату, иными словами, разработка алгоритма решения задачи. Для обозначения части информатики, связанной с разработкой алгоритмов и изучением методов и приемов их построения, применяют термин Brainware (англ. brain — интеллект).

Роль информатики в развитии общества чрезвычайно велика. С ней связано начало революции в области накопления, передачи и обработки информации. Эта революция, следующая за революциями в овладении веществом и энергией, затрагивает и коренным образом преобразует не только сферу материального производства, но и интеллектуальную, духовную сферы жизни. Прогрессивное увеличение возможностей компьютерной техники, развитие информационных сетей, создание новых информационных технологий приводят к значительным изменениям во всех сферах общества: в производстве, науке, образовании, медицине и т.д. Термин  "информация"  происходит от латинского слова  "informatio",  что означает сведения,  разъяснения,  изложение. Несмотря на широкое распространение этого термина, понятие информации является одним из самых дискуссионных в науке. В настоящее время наука пытается найти общие свойства и закономерности, присущие многогранному понятию информация, но пока это понятие во многом остается интуитивным и получает различные смысловые наполнения в различных отраслях человеческой деятельности: в обиходе информацией называют любые данные или сведения, которые кого-либо интересуют. Например, сообщение о каких-либо событиях, о чьей-либо деятельности и т.п.   "Информировать" в этом смысле означает   "сообщить нечто, неизвестное раньше";

  • в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов;

  • в кибернетике под информацией понимает ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы.

Информация — это обозначение содержания, полученного из внешнего мира в процессе нашего приспособления к нему и приспособления к нему наших чувств. Люди обмениваются информацией в форме сообщений. Сообщение — это форма представления информации в виде речи, текстов, жестов, взглядов, изображений, цифровых данных, графиков, таблиц и т.п. Информация есть характеристика не сообщения, а соотношения между сообщением и его потребителем. Без наличия потребителя, хотя бы потенциального, говорить об информации бессмысленно. В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит. Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения. Информация может существовать в виде:

  • текстов, рисунков, чертежей, фотографий;

  • световых или звуковых сигналов;

  • радиоволн;

  • электрических и нервных импульсов;

  • магнитных записей;

  • жестов и мимики;

  • запахов и вкусовых ощущений;

  • хромосом, посредством которых передаются по наследству признаки и свойства организмов и т.д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами. В качестве единицы измерения информации выступает  один  бит    (англ. bit — binary digit — двоичная цифра).Бит в теории информации — количество информации, необходимое для различения двух равновероятных сообщений   (типа "орел"—"решка", "чет"—"нечет" и т.п.). В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд. Бит — слишком мелкая единица измерения. На практике чаще применяется более крупная единица —  байт,  равная  восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=28).

Широко используются также ещё более крупные производные единицы информации:

  • 1 Килобайт (Кбайт) = 1024 байт = 210 байт,

  • 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,

  • 1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

  • 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,

  • 1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации. Информация передаётся в форме сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал. Этот сигнал посылается по каналу связи. В результате в приёмнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением. Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации. Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений. Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, то есть перестаёт отражать истинное положение дел. Информация полна, если её достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки. Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т.п. Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдёт применение в каких-либо видах деятельности человека. Только своевременно полученная информация может принести ожидаемую пользу. Одинаково нежелательны как преждевременная подача информации (когда она ещё не может быть усвоена), так и её задержка. Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной. Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация. Обработка информации — получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов. Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации. Средства обработки информации — это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер — универсальная машина для обработки информации. Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов. Живые организмы и растения обрабатывают информацию с помощью своих органов и систем. Информационные ресурсы — это идеи человечества и указания по их реализации, накопленные в форме, позволяющей их воспроизводство. Информационные ресурсы (в отличие от всех других видов ресурсов — трудовых, энергетических, минеральных и т.д.) тем быстрее растут, чем больше их расходуют. Информационная технология — это совокупность методов и устройств, используемых людьми для обработки информации. Человечество занималось обработкой информации тысячи лет. Первые информационные технологии основывались на использовании счётов и письменности. Около пятидесяти лет назад началось исключительно быстрое развитие этих технологий, что в первую очередь связано с появлением компьютеров. В настоящее время термин "информационная технология" употребляется в связи с использованием компьютеров для обработки информации. Информационные технологии охватывают всю вычислительную технику и технику связи и, отчасти, — бытовую электронику, телевидение и радиовещание. Они находят применение в промышленности, торговле, управлении, банковской системе, образовании, здравоохранении, медицине и науке, транспорте и связи, сельском хозяйстве, системе социального обеспечения, служат подспорьем людям различных профессий и домохозяйкам. В настоящее время создание крупномасштабных информационно-технологических систем является экономически возможным, и это обусловливает появление национальных исследовательских и образовательных программ, призванных стимулировать их разработку. Цель информатизации — улучшение качества жизни людей за счет увеличения производительности и облегчения условий их труда. Информатизация — это сложный социальный процесс, связанный со значительными изменениями в образе жизни населения. Он требует серьёзных усилий на многих направлениях, включая ликвидацию компьютерной неграмотности, формирование культуры использования новых информационных технологий и др.

Тема 2. Арифметические и логические основы работы ЭВМ.
Система счисления — это совокупность приемов и правил, по которым числа записываются и читаются. Существуют позиционные и непозиционные системы счисления. В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти. В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая — 7 единиц, а третья — 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 . 102 + 5 . 101 + 7 . 100 + 7 . 10—1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием. Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления. За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием  q  означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2 + ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,


где  ai  — цифры системы счисления;   n и m — число целых и дробных разрядов, соответственно.
Например:



Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:

  • двоичная (используются цифры 0, 1);

  • восьмеричная (используются цифры 0, 1, ..., 7);

  • шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел — от десяти до пятнадцати — в качестве цифр используются символы A, B, C, D, E, F).

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. В компьютерах применяется двоичная система потому, что она имеет ряд преимуществ перед другими системами:

  • для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной;

  • представление информации посредством только двух состояний надежно и помехоустойчиво;

  • возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

  • двоичная арифметика намного проще десятичной.

Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел. Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи. Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы. Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 — соответственно, третья и четвертая степени числа 2).

Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).
  Например:



Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на  триады  (для восьмеричной) или  тетрады  (для шестнадцатеричной)  и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.
  Например,


 

Для перевода целого десятичного числа  ^ N  в систему счисления с основанием  y необходимо  N  разделить с остатком ("нацело") на  y , записанное в той же десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на  y , и т.д., пока последнее полученное неполное частное не станет равным нулю. Представлением числа N  в новой системе счисления будет последовательность остатков деления, изображенных одной y-ичной цифрой и записанных в порядке, обратном порядку их получения.

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112   =  1138  =  4B16.

Перевод в десятичную систему числа x, записанного в q-ичной cистеме счисления (q = 2, 8 или 16) в виде xq = (anan-1   ...  a ,  a-1  a-2   ...   a-m)q   сводится к вычислению значения многочлена  x10 = an  qn +  an-1  qn-1   +   ...   +  a0   q0   +   a-1   q -1   +   a-2   q-2   +     ...     +   a-m   q-m    средствами десятичной арифметики

Примеpы:


Тема 3. Организация данных в ЭВМ. Представление данных в ЭВМ. Файловая система.
Команда — это описание элементарной операции, которую должен выполнить компьютер.В общем случае, команда содержит следующую информацию:

  • код выполняемой операции;

  • указания по определению операндов (или их адресов);

  • указания по размещению получаемого результата. В зависимости от количества операндов, команды бывают:

  • одноадресные;

  • двухадресные;

  • трехадресные;

  • переменноадресные.

Команды хранятся в ячейках памяти в двоичном коде.

В современных компьютерах длина команд переменная (обычно от двух до четырех байтов), а способы указания адресов переменных весьма разнообразные. В адресной части команды может быть указан, например:

  • сам операнд (число или символ);

  • адрес операнда (номер байта, начиная с которого расположен операнд);

  • адрес адреса операнда (номер байта, начиная с которого расположен адрес операнда), и др.

Файл (англ. file —папка) — это именованная совокупность любых данных, размещенная на внешнем запоминающем устройстве и хранимая, пересылаемая и обрабатываемая как единое целое. Файл может содержать программу, числовые данные, текст, закодированное изображение и др. Файловая система — это средство для организации хранения файлов на каком-либо носителе. Файлы физически реализуются как участки памяти на внешних носителях — магнитных дисках или CD-ROM. Каждый файл занимает некоторое количество блоков дисковой памяти. Обычная длина блока — 512 байт. Обслуживает файлы специальный модуль операционной системы, называемый драйвером файловой системы. Каждый файл имеет имя, зарегистрированное в каталоге — оглавлении файлов. Каталог (иногда называется директорией или папкой) доступен пользователю через командный язык операционной системы. Его можно просматривать, переименовывать зарегистрированные в нем файлы, переносить их содержимое на новое место и удалять. Каталог может иметь собственное имя и храниться в другом каталоге наряду с обычными файлами: так образуются иерархические файловые структуры.
К файловой системе имеет доступ также и любая прикладная программа, для чего во всех языках программирования имеются специальные процедуры. Понятие файла может быть обращено на любой источник или потребитель информации в машине, например, в качестве файла для программы могут выступать принтер, дисплей, клавиатура и др. Структура файловой системы и структура хранения данных на внешних магнитных носителях определяет удобство работы пользователя, скорость доступа к файлам и т.д.
Тема 4. Аппаратные средства вычислительной техники.

Компьютер (англ. computer — вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Существует два основных класса компьютеров:

  • цифровые компьютеры, обрабатывающие данные в виде двоичных кодов;

  • аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин.

Поскольку в настоящее время подавляющее большинство компьютеров являются цифровыми, далее будем рассматривать только этот класс компьютеров и слово "компьютер" употреблять в значении "цифровой компьютер".

Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) — заранее заданных, четко определённых последовательностей арифметических, логических и других операций. Любая компьютерная программа представляет собой последовательность отдельных команд.

Команда — это описание операции, которую должен выполнить компьютер. Как правило, у команды есть свой код (условное обозначение), исходные данные (операнды) и результат.

Например, у команды "сложить два числа" операндами являются слагаемые, а результатом — их сумма. А у команды "стоп" операндов нет, а результатом является прекращение работы программы. Результат команды вырабатывается по точно определенным для данной команды правилам, заложенным в конструкцию компьютера. Совокупность команд, выполняемых данным компьютером, называется системой команд этого компьютера. Компьютеры работают с очень высокой скоростью, составляющей миллионы — сотни миллионов операций в секунду.

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”. Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т.е. они могут работать без “счетчика команд”, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими.

Разнообразие современных компьютеров очень велико. Но их структуры основаны на общих логических принципах, позволяющих выделить в любом компьютере следующие главные устройства:

  • память (запоминающее устройство, ЗУ), состоящую из перенумерованных ячеек;

  • процессор, включающий в себя устройство управления (УУ) и арифметико-логическое устройство (АЛУ);

  • устройство ввода;

  • устройство вывода.

Эти устройства соединены каналами связи, по которым передается информация.

Функции памяти:

  • приём информации из других устройств;

  • запоминание информации;

  • выдача информации по запросу в другие устройства машины.

Функции процессора:

  • обработка данных по заданной программе путем выполнения арифметических и логических операций;

  • программное управление работой устройств компьютера.

Та часть процессора, которая выполняет команды, называется арифметико-логическим устройством (АЛУ), а другая его часть, выполняющая функции управления устройствами, называется устройством управления (УУ). Обычно эти два устройства выделяются чисто условно, конструктивно они не разделены.

В составе процессора имеется ряд специализированных дополнительных ячеек памяти, называемых регистрами.

Существует несколько типов регистров, отличающихся видом выполняемых операций. Некоторые важные регистры имеют свои названия, например:

  • сумматор — регистр АЛУ, участвующий в выполнении каждой операции;

  • счетчик команд — регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти;

  • регистр команд — регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные — для хранения кодов адресов операндов.
  1   2   3   4   5   6   7   8   9

Добавить документ в свой блог или на сайт

Похожие:

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconУчебное пособие Воронеж 2011 фгбоу впо ”Воронежский государственный технический университет ”
Утверждено Редакционно-издательским советом университета в качестве учебного пособия

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconКраткий курс лекций по грамматике английского языка Утверждено Редакционно-издательским советом
Краткий курс лекций по грамматике английского языка: Учеб. Пособие. Магнитогорск: мгту им. Г. И. Носова, 2001. — 71 с

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconИнженерная графика учебное пособие
Утверждено редакционно-издательским советом спбгиэу в качестве учебного пособия для спец. 220501, 080502(1), 080502(7)

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconРеспублики Беларусь Учреждение образования «Витебская ордена «Знак...
Утверждено редакционно-издательским советом академии в качестве учебно-методического пособия

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconЧетверикова Ю. И. История экономических учений утверждено Редакционно-издательским...
Рекомендуется для студентов вузов, а также для самостоятельно изучающих историю экономических учений

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconКонтрольная работа №1 по дисциплине
Допущено редакционно-издательским советом спбгиэу в качестве методических указаний

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconЭтика курс лекций (на основе книги: Этика (конспект лекций)
Этика (конспект лекций). – М.: «Приор-издат», 2002. Автор-составитель Аристотель. Никомахова этика. Сочинения: в 4-х т. Т. М.: Мысль,...

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconУчебно-методическое пособие подготовлено в соответствии с программой...
Утверждено редакционно-издательским советом академии в качестве учебного пособия для студентов 3-го курса факультета заочного обучения...

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconД. А. Белухин педагогическая этика: желаемое и действительное
...

Конспект лекций Утверждено Редакционно-издательским советом в качестве конспекта лекций Воронеж 2003 iconКонспект лекций Донецк 2003 министерство образования и науки украины
Аветисова А. А. Основы предпринимательства. Опорный конспект. Донецк, Дон гуэт, 2003. – 195 с

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов