Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические




Скачать 359.64 Kb.
НазваниеГенетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические
страница1/3
Дата публикации29.12.2013
Размер359.64 Kb.
ТипДокументы
zadocs.ru > Информатика > Документы
  1   2   3

1) Генетика человека – основа медицинской генетики. Человек – удобный генетический объект. У человека лучше, чем у других видов изучены биохимические, иммунологические, физиологические и другие реакции, а эти признаки детерминированы генами.

98-99% заболеваний возникают в результате поражения генетического материала.

1-2% - травмы и ожоги.

Генетика человека – наука о наследственно обусловленных различиях людей и о нарушениях генетического материала.


2)Наследственность – свойство живых организмов, обеспечивающее материальную преемственность онтогенеза в определенных условиях внешней среды. Гены детерминируют последовательность полипептидной цепи.

Наследование – передача информации от одного поколения к другому. Благодаря наследственности стало возможно существование популяций, видов и других групп.

1953 год – расшифрована структура молекулы ДНК.

Считается, что молекула ДНК составляет хромосому – унимолярная теория (некоторые исследователи предполагают, что несколько ДНК образуют 1 хромосому). Почти вся ДНК эукариот в ядре.

У бактерий – 4000000 нуклеотидов.

Из нескольких тысяч состоят минихромосомы (плазмиды). К плазмидам относят также ДНК хлоропластов, митохондрий. Хорошо изучены плазмиды бактерий.

R-фактор – фактор устойчивости к лекарствам (сульфамидные препараты, антибиотики). В плазмидах есть информация о специфических активных ферментах. Генов должно быть очень много. Происходит амплификация (умножение генетического материала). Она может происходить путем прокатывания и образования плазмид.

Плазмиды широко используются в генной инженерии. Они используются как носители чужеродной ДНК, поиски новых подходов к преодолению лекарственной устойчивости у бактерий.

Ген – участок молекулы ДНК, который несет информацию о структуре полипептидной цепи или макромолекулы. Гены одной хромосомы располагаются линейно, образую группу сцепления. ДНК в хромосоме выполняет разные функции. Существуют разные последовательности генов, есть последовательности генов, контролирующих экспрессию генов, репликацию и др. Есть гены, содержащие информацию о структуре полипептидной цепи, в конечном счете – структурных белках. Такие последовательности нуклеотидов длинной в один ген, называются структурными генами. Гены, определяющие место, время, длительность включения структурных генов – регуляторные гены.


3) Хромосома состоит из 2 хроматид, соединенных центромерой (кинетохором).

Хромосомы бывают:

-метацентрические

-субметацентрические

-акроцентрические.

5) ^ Положения хромосомной теории:

1. Гены расположены в хромосомах линейно в определенных локусах (участках). Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

2. Гены одной хромосомы образуют группу сцепления; число их равно гаплоидному набору хромосом.

3. Между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер).

4. Расстояние между генами пропорционально проценту кроссинговера между ними и выражается в морганидах (1 морганида равна 1% кроссинговера).

6)

4) Хромосомный набор — совокупность хромосом, заключенных в каждой клетке организма. В половых клетках содержится гаплоидный (одинарный) хромосомный набор, в котором хромосома каждого типа встречается только один раз; в большинстве соматических (телесных) клеток большинства видов — диплоидный (двойной), в котором имеются всегда по две хромосомы каждого типа (парные, или гомологичные, хромосомы, происходящие одна от материнского организма, а другая от отцовского). Каждый вид организмов обладает характерным и постоянным хромосомным набором Геном – совокупность генов, характерных для гаплоидного набора хромосом данного вида. При оплодотворении геномы родителей объединяются и образуют клеточный генотип зиготы.

Генотип – совокупность всех генов организма (генетическая конституция). Из генотипа зиготы в процессе онтогенеза возникает много сотен различных клеточных фенотипов. Отдельные клеточные фенотипы формируют фенотип всего организма. Весь процесс жизни от образования зиготы до естественной смерти контролируется генами. Генотип постоянно испытывает воздействие внешней среды, он взаимодействует со средой, что приводит к формированию всех признаков и свойств организма. Кариотип – диплоидный набор хромосом, характеризующийся совокупностью признаков: число, форма, размер, особенности строения хромосом. Постоянство кариотипа поддерживается механизмам и митоза и мейоза. Идиограмма - (от греч . idios - свой, своеобразный и ...грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами. Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами. Аллельные гены - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологических хромосом. Аллели определяют варианты развития одного и того же признака. В нормальной диплоидной клетке могут присутствовать не более двух аллелей одного локуса одновременно. В одной гамете два аллеля находиться не могут.


6) Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития). Доминантный признак — признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Результат наличия доминантного аллеля. Обычно «дикий тип», то есть вариант, присущий большинству особей природных популяций — это доминантный признак. Например, чёрная окраска перьев у грачей — доминатный признак, а редко встречающаяся белая окраска, вызванная неспособностью синтезировать пигмент — рецессивный. Доминантные признаки могут быть обусловлены генами, расположенными в неполовых (аутосомах) хромосомах или в половых хромосомах (признаки, сцепленные с полом). В первом случае признак называется доминантно-аутосомным. Рецессивный признак — признак, не проявляющийся у гетерозиготных особей вследствие подавления проявления рецессивного аллеля.

^ Рецессивные признаки — признаки, проявление которых у гибридов первого поколения подавлено при условии скрещивания двух чистых линий, одна из которых гомозиготна по доминантному аллелю, а другая — по рецессивному. В этом случае (при моногибридном скрещивании) в соответствии с законом расщепления во втором поколении рецессивный признак вновь проявляется примерно у 25 % гибридов. Гомозиго́та (др.-греч. ὅμοιος — подобный, похожий, равный; ζυγωτός — спаренный, удвоенный) — диплоидный организм или клетка, несущий идентичные аллели в гомологичных хромосомах.
Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными. Вопреки распростороненному мнению, две гомозиготы не могут произвести потомства. Ге́терозиго́тными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга. Гемизиго́тным называют диплоидный организм, у которого имеется только один аллель данного гена или один сегмент хромосомы вместо обычных двух. Для организмов, у которых гетерогаметный пол мужской (как у людей и всех остальных млекопитающих), почти все гены, связанные с X хромосомой, гемизиготны у самцов, так как у самцов в норме имеется только одна X хромосома. Гемизиготное состояние аллелей или хромосом используется в генетическом анализе с целью поиска места локализации генов, ответственных за какой-либо признак. Группу сцепления образуют все гены, локализованные в одной хромосоме, так как каждый из этих генов проявляет сцепление с другими генами, расположенными в той же хромосоме. Гены одной группы сцепления наследуются независимо от генов, принадлежащих другой группе сцепления. Число таких групп соответствует гаплоидному числу хромосом.


7) Наследственность – свойство живых организмов, обеспечивающее материальную преемственность онтогенеза в определенных условиях внешней среды. Гены детерминируют последовательность полипептидной цепи.

Наследование – передача информации от одного поколения к другому. Благодаря наследственности стало возможно существование популяций, видов и других групп.

1953 год – расшифрована структура молекулы ДНК.

Считается, что молекула ДНК составляет хромосому – унимолярная теория (некоторые исследователи предполагают, что несколько ДНК образуют 1 хромосому). Почти вся ДНК эукариот в ядре.

У бактерий – 4000000 нуклеотидов.

Из нескольких тысяч состоят минихромосомы (плазмиды). К плазмидам относят также ДНК хлоропластов, митохондрий. Хорошо изучены плазмиды бактерий.

R-фактор – фактор устойчивости к лекарствам (сульфамидные препараты, антибиотики). В плазмидах есть информация о специфических активных ферментах. Генов должно быть очень много. Происходит амплификация (умножение генетического материала). Она может происходить путем прокатывания и образования плазмид.

Плазмиды широко используются в генной инженерии. Они используются как носители чужеродной ДНК, поиски новых подходов к преодолению лекарственной устойчивости у бактерий.

Выделяют несколько типов наследования признаков. Ядерное наследование может быть аутосомным (гены находятся в аутосомах) и сцепленным с полом (гены

находятся в половых хромосомах). ^ Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола , но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в т.ч. человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием Z-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

8) 1)При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

^ Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

^ Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

9) при аутосомно-рецессивных заболеваниях у здоровых родителей некоторые дети оказываются больными. Это связано с тем, что оба родителя являются носителями аномального аутосомно-рецесссивного гена. Для этого типа наследования характерны следующие закономерности. Фенилкетонурия впервые была открыта учёным-генетиком Феллингом в 1934 году. В основе её развития лежит резкое снижение активности фермента, превращающего аминокислоту фенилаланин в тирозин. У гомозиготных по этой мутации людей в крови значительно повышается концентрация фенилаланина и ряда других соединений, оказывающих вредное воздействие. В итоге гомозиготные дети отстают в развитии, у них наблюдаются повреждения мозга и возникает умственная отсталость.

при аутосомно-доминантном типе наследования гетерозиготное носительство мутации оказывается достаточным для проявления заболевания. При этом мальчики и девочки поражаются одинаково. В количественном отношении доминантных заболеваний больше, чем рецессивных. В отличие от рецессивных, доминантные мутации не приводят к инактивации функции кодируемого белка. Их эффект обусловлен либо снижением дозы нормального алле-ля (так называемая гаплонедостаточность), либо появлением у мутантного белка нового агрессивного свойства.
Вероятность рождения больных детей в браке гетерозиготного носителя доминантной мутации со здоровым супругом (супругой) составляет 50%. Поэтому аутосомно-доминантные заболевания часто носят семейный характер и передаются из поколения в поколение или, как говорят, «по вертикали», причем среди родственников только со стороны одного из родителей больного. Больные и его родители обязательно должны быть проконсультированы врачом-генетиком для уточнения диагноза, выявления членов семьи с риском рождения подобного больного и выработки тактики обследования консультируемых при планировании ребенка.
^ Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.
Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

10-11) В рассмотренных примерах по гибридизации гены ведут себя как отдельные самостоятельные единицы: они наследуются независимо друг от друга и каждый из них определяет развитие одного конкретного признака. Однако это не всегда так. Каждая клетка и организм представляют собой целостные системы, где все физиологические и биохимические процессы строго взаимосвязаны. Это определяется интегрированностью генотипа, т. е. системой взаимодействующих генов.
Взаимодействовать могут гены как одной аллельной пары (внутриаллельное взаимодействие), так и разных (межаллельное взаимодействие). Часто взаимоотношения аллельных генов выражаются в доминантности (полной и неполной) и рецессивности. Полное доминирование наблюдается в том случае, когда доминантный ген полностью подавляет действие рецессивного гена (например, желтый и зеленый цвет горошин). При неполном доминировании доминантный ген не полностью подавляет действие рецессивного гена, наблюдается промежуточное наследование (например, окраска цветков у ночной красавицы). В сериях множественных аллелей (когда аллельных генов больше, чем два) эти отношения более сложные. Один и тот же ген может выступать как доминантный по отношению к одной аллели и как рецессивный по отношению к другой. Например, ген гималайской окраски кроликов доминантен по отношению к белой, но рецессивен по отношению к серой окраске шерсти (шиншилла). При кодоминировании ни один из аллельных генов не подавляет другой, они равноценны. Если два кодоминантных гена находятся в одном генотипе, они оба проявляются фенотипически. Например, четвертая группа крови у человека по АВО-системе детерминируется одновременным присутствием в генотипе двух кодоминантных генов JA и JB. Ген JA детерминирует синтез антигена А в эритроцитах, а ген JB – антигена В.
Известно много примеров, когда гены одной аллельной пары влияют на характер проявления генов другой аллельной пары. Например, развитие разной формы гребня у кур определяется взаимодействием двух пар аллелей: присутствие в генотипе доминантного гена А определяет развитие розовидного гребня, доминантного гена В – гороховидного; одновременное присутствие в генотипе обоих доминантных генов (АВ) – ореховидного, а рецессивные гомозиготы по обоим аллелям (ааbb) имеют листовидный гребень. Вид межаллельного взаимодействия генов, при котором одновременное присутствие в генотипе доминантных (рецессивных) генов разных аллельных пар приводит к проявлению нового признака, называется комплементарностью. Известны случаи, когда доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары. Такой вид взаимодействия генов называется эпистазом, а подавляющий ген – супрессором. Например, у кур доминантный ген С детерминирует синтез пигмента, а доминантная аллель другого гена подавляет действие гена С, и куры с генотипом С-I – имеют белое оперение.
  1   2   3

Добавить документ в свой блог или на сайт

Похожие:

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические icon1. Предмет, задачи, методы генетики. История развития генетики. Роль...
Генетика человека – основа медицинской генетики. Человек – удобный генетический объект. У человека лучше, чем у других видов изучены...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconПрезентация Человек тысячелетия аек казачинский А. Е. Человек тысячелетия...
Определение человека XXI века Три основные идеи человека: философская, теологическая и научная Психофизиология человека XXI века...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconК экзамену по медицинской генетике
...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconБытие является философской категорией, обозначающей реальность, существующую...
Вместе с тем бытие является источником и условием всех форм жизнедеятельности человека. Бытие представляет не только рамки, границы...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические icon1. 1 Человек как результат биологической и социальной эволюции
Антропогенез. Теологическая теория происхождения человека. Эволюционная теория происхождения человека. Уфологическая теория происхождения...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconКак сделать портрет Монте Переработанное издание
Портрет Монте прост, изящен, не отвлекает внимания от человека и обычно изображает его лучше, чем он выглядит на самом деле. Он передает...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические icon3 коллоквиум биология
Человек – объект генетических исследований. Классификация наследственных болезней человека, краткая их характеристика

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconКонтрольные вопросы введение в биохимию. Биохимические компоненты...
Объекты изучения и задачи биохимии. Ведущая роль биохимии в установлении молекулярных механизмов патогенеза болезней человека

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconСкиппинг это один самых эффективных видов коррекции веса человека....
К концу тренировки — один час или более — когда резервы гликогена низки, жир удовлетворяет около 80% энергетических требований. Чем...

Генетика человека основа медицинской генетики. Человек удобный генетический объект. У человека лучше, чем у других видов изучены биохимические iconБахтин М. Проблемы поэтики Достоевского Глава пятая. Слово у достоевского
И изобразить внутреннего человека, как его понимал Достоевский, можно, лишь изображая общение его с другим. Только в общении, во...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов