Решение: N=1607=11001000111




Скачать 100.34 Kb.
НазваниеРешение: N=1607=11001000111
Дата публикации05.03.2016
Размер100.34 Kb.
ТипРешение
zadocs.ru > Информатика > Решение
Кодирование числовой информации

1. Кодирование числовой информации

Все числовые данные хранятся в машине в двоичном виде, т.е. в виде последовательности нулей и единиц, однако формы хранения целых и действительных чисел различны.

Для представления чисел в памяти ПК используются два формата:

-формат с фиксированной точкой (запятой) целые числа;

-формат с плавающей точкой (запятой) вещественные числа.

Представление целых чисел

Множество целых чисел, представленных в ЭВМ, ограничено. Диапазон значений зависит от размера ячеек памяти, используемых для их хранения.

Для целых чисел существуют два представления:

-беззнаковое;

-со знаком.

В К-разрядной ячейке может храниться 2к различных значений целых чисел.

Диапазон значений целых беззнаковых чисел (только положительные):

от 0 до 2к - 1

для 16-разрядной ячейки от 0 до 65535

для 8-разрядной ячейки от 0 до 255

Диапазон значений целых чисел со знаком (и отрицательные, и положительные в равном количестве):

от -2к-1 до 2к-1-1

для 16-разрядной ячейки от -32768 до 32767

для 8-разрядной ячейки от -128 до 127

Чтобы получить внутреннее представление целого положительного числа N, хранящегося в К-разрядной ячейке, необходимо:

1. перевести число N в двоичную систему счисления;

2. полученный результат дополнить слева незначащими нулями до К разрядов.

Пример:

Получить внутреннее представление целого числа 1607 в 2-х байтовой ячейке.

Решение:

N=1607=110010001112.

Внутреннее представление этого числа будет: 0000 0110 0100 0111. Шестнадцатеричная форма внутреннего представления числа: 0647.

^ Для представления целого отрицательного числа используется дополнительный код.

Дополнительным кодом двоичного числа X в N-разрядной ячейке является число, дополняющее его до значения 2N.

Получение дополнительного кода:

1. получить внутреннее представление положительного числа N (прямой код);

2. получить обратный код этого числа заменой 0 на 1 или 1 на 0 (обратный код);

3. к полученному числу прибавить 1.

Положительное число в прямом, обратном и дополнительном кодах не меняют свое изображение.

Использование дополнительного кода позволяет заменить операцию вычитания на операцию сложения.

A-B=A+(-B).

Процессору достаточно уметь лишь складывать числа.

Старший, К-й разряд во внутреннем представлении любого положительного числа равен 0, отрицательного числа равен 1. Поэтому этот разряд называется знаковым разрядом

Пример:

Получить внутреннее представление целого отрицательного числа - 1607.

Решение:

1. Внутреннее представление положительного числа: 000 0110 0100 0111;

2. Обратный код: 1111 1001 1011 1000;

3. Дополнительный код: 1111 1001 1011 1001 - внутреннее двоичное представление числа.

16-ричная форма: F9B9.

Представление вещественных чисел

Вещественные числа представляются в ПК в форме с плавающей точкой.

Этот формат использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления p в некоторой целой степени n которую называют порядком: R=m*pn

Представление числа в форме с плавающей точкой неоднозначно.

Например: 25.324=25324*101=0.0025324*104=2532.4*10-2

В ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в нормализованном представлении должна удовлетворять условию: 0.1p m<1p

Иначе говоря, мантисса меньше 1 и первая значащая цифра - не 0.

В памяти компьютера мантисса представляется как целое число, содержащее только значащие цифры (0 целых и запятая не хранится). Следовательно, внутреннее представление вещественного числа сводиться к представлению пары целых чисел: мантиссы и порядка.

Например: 4-x байтовая ячейка памяти. В ячейке должна содержаться следующая информация о числе:

- знак числа;

- порядок;

- значащие цифры мантиссы.




МАН

ТИ

ССА

1-й байт

2-й байт

3-й байт

4-й байт

В старшем бите 1-го байта хранятся знак числа: 0 обозначает плюс, 1 - минус.

Оставшиеся 7 бит 1-го байта содержат машинный порядок. В следующих трех байтах хранятся значащие цифры мантиссы (24 разряда).

В семи двоичных разрядах помещаются двоичные числа в диапазоне от 0000000 до 1111111. Значит, машинный порядок изменяется в диапазоне от 0 до 127 (в десятичной системе счисления). Всего 128 значений. Порядок, очевидно, может быть как положительным так и отрицательным. Разумно эти 128 значений разделить поровну между положительным и отрицательным значениями порядка: от -64 до 63.

Машинный порядок смещен относительно математического и имеет только положительные значения. Смещение выбирается так, чтобы минимальному математическому значению порядка соответствовал нуль.

Связь между машинным порядком (Мр) и математическим (р) в рассматриваемом случае выражается формулой: Мр = р + 64

Полученная формула записана в десятичной системе. В двоичной системе формула имеет вид: Mp2=p2+10000002

Для записи внутреннего представления вещественного числа необходимо:

1) перевести модуль данного числа в двоичную систему счисления с 24 значащими цифрами;

2) нормализовать двоичное число;

3) найти машинный порядок в двоичной системе счисления;

4) учитывая знак числа, выписать его представление в 4-х байтовом машинном слове.

Пример

Записать внутреннее представление числа 250,1875 в форме с плавающей точкой.

Решение

1) Приведем его в двоичную систему счисления с 24 значащими цифрами: 250.187510=11111010, 0011000000000000002.

2) Запишем в форме нормализованного двоичного числа с плавающей точкой: 0,111110100011000000000000*1021000. Здесь мантисса, основание системы счисления (210=102) и порядок (810=10002) записаны в двоичной системе.

3) Вычислим машинный порядок в двоичной системе счисления: Mp2= 1000 + 100 0000 =100 1000.

4) Запишем представление числа в 4-х байтовой ячейке памяти с учетом знака числа:

0

1001000

11111010

00110000

00000000

31

24

23




0





































Шестнадцатеричная форма: 48FA3000.

Пример

По шестнадцатеричной форме внутреннего представления числа в форме с плавающей точкой C9811000 восстановить само число.

Решение 1) Перейдем к двоичному представлению числа в 4-х байтовой ячейке, заменив каждую шестнадцатеричную цифру 4-мя двоичными цифрами:

1100 1001 1000 0001 0001 0000 0000 0000

1

1001001

10000001

00010000

00000000

31




23




0





































2) Заметим, что получен код отрицательного числа, поскольку в старшем разряде с номером 31 записана 1. Получим порядок числа: р=10010012 -10000002=10012=910.

3) Запишем в форме нормализованного двоичного числа с плавающей точкой с учетом знака числа:

-0,100000010001000000000000 *21001

4) Число в двоичной системе счисления имеет вид: -100000010.0012.

5) Переведем число в десятичную систему счисления:

-100000010.0012= -(1*28+1*21+1*2-3)= -258.12510

^ 2. Кодирование нечисловой информации

2. Кодирование нечисловой информации

Цифровое представление символов

Правило цифрового представления символов следующее: каждому символу ставится в соответствие некоторое целое число, то есть каждый символ нумеруется.

Пример:

Рассмотрим последовательность строчных букв русского алфавита: а, б, в, г, д, е, ё, ж, з, и, й. к, л, м. н. о, п, р, с, т, у, ф, х, ц, ч, ш, щ, ъ, ы, в, э, ю, я. Присвоив каждой букве номер от 0 до 33. получим простейший способ представления символов. Последнее число - 32 в двоичной форме имеет вид 100000, то есть для хранения символа в памяти понадобится 6 бит.Так как с помощью шести бит можно представить число 26 - 1 = 63, то шести бит будет достаточно для представления 64 букв.

Имеются разные стандарты для представления, символов, которые отличаются лишь порядком нумерации символов. Наиболее-распространён американский стандартный код для информационного обмена - ASCII [American Standard-Code for Information Interchange] введён в США в 1963г. В 1977 году в несколько модифицированном виде он был принят в качестве всемирного стандарта Международной организации стандартов [International Standards Organization -. ISO] под названием ISO-646. Согласно этому стандарту каждому символу поставлено в соответствие число от 0 до 255. Символы от 0 до 127 - латинские буквы, цифры и знаки препинания - составляют постоянную часть таблицы. Остальные символы используются для представления национальных алфавитов. Конкретный состав этих символов определяется кодовой страницей. В русской версии ОC Windows95 используется кодовая, страница 866. В ОС Linux для представления русских букв более употребительна кодировка КОИ-8. Недостатки такого способа кодировки национального, алфавита очевидны. Во-первых, невозможно одновременное представление русских и ,например, французских букв. Во-вторых, такая кодировка совершенно непригодна для представления, китайских иероглифов. В 1991 году была создана некоммерческая организация Unicode, в которую входят представители ряда фирм (Borland. IBM, Noyell, Sun и др) и которая занимается развитием и внедрением нового стандарта. Кодировка Unicode использует 16 разрядов ,и может содержать 65536 символов. Это символы большинства народов мира, элементы иероглифов, спецсимволы, 5000 – мест для частного использования, резерв из 30000 мест.

Пример :

ASCII -код символа А.= 6510 =4116= 010001112;

Unicode -код символа С= 6710=00000000011001112

Цифровое представление изображений

Под изображением будем понимать прямоугольную область, закрашенную, непрерывно изменяющимся цветом. Поэтому, для представления изображений в целых числах необходимо отдельно дискретизировать прямоугольную область и цвет.

Для описания области она разбивается на множество точечных элементов - пцкселов [pixel]. Само множество называется растром [bit map, dot matrix, raster], а изображения, которые формируются на основе растра, называются растровыми.

Число пикселов называется разрешением [resolution]. Часто встречаются значения 640x480, 800x600. 1024x768. 1280x1024. Каждый пиксел нумеруется, начиная с нуля слева направо и сверху вниз. Для представления цвета используются цветовые модели. Цветовая модель [color model] это правило. по которому может быть вычислен цвет. Самая простая цветовая модель - битовая. В ней для описания цвета каждого цвета каждого пиксела (черного или белого), используется всего один бит. Для представления полноцветных изображений, используются несколько более сложных моделей. Известно, что любой цвет может быть представлен как сумма, трёх основных цветов: красного, зелёного и синего. Если интенсивность каждого цвета представить числом, то любой цвет будет выражаться через набор из трёх чисел. Так определяется наиболее известная цветовая RGB-модель. На каждое число отводится один байт. Так можно представить 224 цвета, то есть примерно 16,7 млн. цветов. Белый цвет в этой модели представляется как (1,1,1), чёрный - (0,0,0); красный - (1,0,0), синий - (0,0,1). Жёлтый цвет является комбинацией красного и зелёного и потому представляется как (1,1,0).

Цветовая модель RGB [Red-Green-Blue] была стандартизирована в 1931 г. и впервые использована в цветном телевидении. Модель RGB является аддитивной моделью, то есть цвет получается в результате сложения базовых цветов. Существуют и другие цветовые модели, которые для ряда задач оказываются более предпочтительными, чем RGB-модель. Например, для представления цвета в принтере используется субтрактивная CMY-модель [Cyan-Magenta-Yellow], цвет в которой получается в результате вычитания базовых цветов из белого цвета. Белому цвету в этой модели соответствует (0.0.0). чёрному - (1,1,1), голубому - (1,0,0). сиреневому - (0,1,0), жёлтому - (0,0,1). В цветовой модели HSV [Hue-Saturation-Value] цвет представляется через цвет, насыщенность и значение, а в модели HLS [Hue-Lightness-Saturation] через оттенок, яркость и насыщенность. Современные графические редакторы, как правило, могут работать с несколькими цветовыми моделями.

Цифровое представление звука

Звук можно описать в виде совокупности синусоидальных волн определённых частоты и амплитуды. Частота волны определяет высоту звукового тона, амплитуда - громкость звука. Частота измеряется в герцах (Гц [Hz]). Диапазон слышимости для человека составляет от 20 Гц до 17000 Гц (или 17 кГц).

Задача цифрового представления звука, таким образом, сводится к задаче описания синусоидальной кривой. Каждой дискретной выборке присваивается целое число - значение амплитуды. Количество выборок в секунду называется частотой выборки [sampling rate]. Количество возможных значений амплитуды называется точностью выборки [sampling size]. Таким образом, звуковая волна представляется в виде ступенчатой кривой. Ширина ступеньки тем меньше, чем больше частота выборки, а высота ступеньки тем меньше, чем больше точность выборки.

Пример

Возможности наиболее распространённой современной аппаратуры предусматривают работу с частотой выборки до 44.1 кГц, что позволяет правильно описывать звук частотой до 22,05 кГц. Точность выборки имеет всего два значения 8 бит и 16 бит. То есть для представления амплитуды 8-битного звука используется 28 = 256 уровней амплитуды.

Добавить документ в свой блог или на сайт

Похожие:

Решение: N=1607=11001000111 iconВопросы к экзамену по дифференциальным уравнениям группа нмб-11
Определение дифференциального уравнения первого порядка. Решение, общее решение, интегральная кривая, общий интеграл, задача Коши,...

Решение: N=1607=11001000111 iconЛекция Государство и право США в период Нового времени
Первые постоянные английские поселения были основаны в 1607 г на территории современного штата Вирджиния, а к середине XVIII в в...

Решение: N=1607=11001000111 iconРешение принять решение это уже решение
Кейс (от английского case) — многозначное понятие, которое в данном контексте трактуется как случай, казус (от латинского casus),...

Решение: N=1607=11001000111 iconРешение системы
Решить систему методом Жордано Гаусса. Найти общее решение и два частных. Сделать проверку общего решения

Решение: N=1607=11001000111 iconМудрости на пути правителя
На пути принятия решений можно принять любое решение, но ни одно решение не решает всех вопросов

Решение: N=1607=11001000111 iconДля решения проблемы необходимо ответить на следующие вопросы: для...
Управленческое решение – это результат анализа, прогнозирования, оптимизации, экономического обоснования и выбора альтернативы из...

Решение: N=1607=11001000111 iconРешение. Определим нижнюю цену игры
Для платежной матрицы определить нижнюю и верхнюю цену игры, минимаксные стратегии и оптимальное решение игры и седловую точку

Решение: N=1607=11001000111 iconРешение. Часть 1
Конституции РФ. Тест состоит из двух частей: первая часть состоит из 20 простых вопросов, на которые предусмотрен только один ответ;...

Решение: N=1607=11001000111 iconВ. Познин Изобразительное решение аудиовизуального произведения
«Изобразительное решение аудиовизуального произведения», но, думается, они будут полезны всем, кто готовится к работе по созданию...

Решение: N=1607=11001000111 iconЗадачи по уп
Зао указанной суммы. Суд вынес решение в пользу истца. Директор зао стропилов отказался исполнять судебный акт, заявив, что решение...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов