Нерешенные проблемы теории эволюции




НазваниеНерешенные проблемы теории эволюции
страница5/19
Дата публикации28.01.2014
Размер1.86 Mb.
ТипДокументы
zadocs.ru > История > Документы
1   2   3   4   5   6   7   8   9   ...   19
^

Глава II

ЭКОСИСТЕМНАЯ ТЕОРИЯ ЭВОЛЮЦИИ


Одним он (Эпиметей) дал силу без быстроты, других же, более слабых, наделил быстротой; одних он вооружил, другим, по природе безоружным, измыслил какое-нибудь другое средство во спасение... Все это он измыслил из осторожности, чтобы не исчез ни один род.

^ Платон. Протагор.

Считается, что Дарвину для завершения теории эволюции не хватало только генетики. Но, может быть, ему еще в большей степени не хватало экологии (правда, сам Дарвин развивал и то, и другое — я отношу теорию пангенеза к началам генетики,— но это были лишь первые шаги). Здесь мнения редукционистов и композиционистов неизбежно разойдутся. Первые сводят свойства системы к свойствам ее компонентов и соответственно ищут первопричину развития во все более мелких компонентах. Вторые признают особые системные свойства, порожденные взаимодействием компонентов («эмергентные»); у самих компонентов этих свойств нет — стало быть, бесполезно обращаться к ним в поисках первопричин.

Структура синтетической теории эволюции в том виде, в каком она излагается в учебниках, свидетельствует о том, что редукционистский подход взял верх. Изложение начинают с самого элементарного из известных нам уровней — генных мутаций, которые случайны, т. е. необъяснимы. Затем включается естественный отбор, превращающий случайное в закономерное и ведущий нас от генов к фенам, популяциям, видам и сообществам.

Кажется, иначе и невозможно—вначале был хаос, из него возник порядок, а вместе с ним и причинность. Но, может быть, мы просто начали не с того конца?

Компоненты определяют свойства системы, а система — свойства компонентов. Конечно, толпа — это всего лишь большое скопление людей, но человек в толпе — уже не тот, что наедине с собой, и встроенная в геном частица ДНК отличается от свободной. Парадокс компонента и системы заключается в том, что система предназначена для сохранения компонента, но сохранение самой системы требует его изменения. Когда-то люди селились в городах ради собственной безопасности, но потом готовы были жертвовать собой ради безопасности городов. Чтобы понять, что произошло с человеком в толпе (или ДНК-овой частицей в геноме), нужно взглянуть на толпу (или геном). Хотя существует и восходящая, и нисходящая причинность, импульс развития, по-видимому, распространяется сверху вниз, от системы к ее компонентам, диктуя последовательность эволюционных объяснений. Во всяком случае попытки эволюционистов идти снизу вверх, от компонентов к системе, всегда кончались или отказом от объяснения (апелляция к случайности), или метафизическими псевдообъяснениями (апелляция к изначально присущему, «жизненной силе» и т. п.). Поэтому изложение экосистемной теории мы начнем, в отличие от традиционной, с систем высшего уровня.
^

ГЕОЛОГИЧЕСКИЕ КРИЗИСЫ


Основные черты строения Земли возникли на очень ранней, возможно, еще протопланетной стадии. Однако в ее недрах не прекращаются процессы, находящие поверхностное выражение в поднятии и опускании континентов, дроблении и смятии в складки пород земной коры, вулканизме и оказывающие разнообразное влияние на (очевидно, порожденные ими) водную и воздушную оболочки, биосферу и жизнь.

Не стихают споры между геологами относительно природы этих процессов, их распределения во времени. Одни считают их непрерывными, другие — спазматическими. С усовершенствованием методов геохронологии картина постепенно проясняется. Движения земной коры и вулканизм, по-видимому, никогда не прекращались полностью, но были периоды их ослабления и уси ления в масштабах всей Земли. Последние называют глобальными геологическими кризисами.

Причину кризисов часть исследователей видит в продолжающейся дифференциации земного вещества, росте земного ядра за счет мантии в сочетании с тепловой конвекцией всей мантии или ее верхних слоев. Без вмешательств извне этот процесс, наверное, привел бы к постепенному затуханию активности земных недр. Но у нас нет оснований считать Землю закрытой системой. Она испытывает разнообразные воздействия со стороны соседних планет, Солнца и других звезд. Периодичность геологических кризисов—около 180 и около 30 млн. лет—наводит на мысль о том, что геологические кризисы возникают в результате взаимодействия Земли с другими космическими телами, поскольку первый период соответствует галактическому году — периоду обращения Солнечной системы вокруг центра Галактики, второй — периоду ее вертикальных колебаний около галактической плоскости. Среди ученых, давно уже подметивших эту связь и сделавших соответствующие выводы, назовем в первую очередь А. Веронне, Б. Л. Личкова и Г. Ф. Лунгерсгаузена, основные работы которых относятся соответственно к 20-м, 50-м и 60-м годам.

Одна из наиболее очевидных форм космических воздействий — это метеоритные бомбардировки. Все планеты испытали мощную бомбардировку в конце их формирования более 4 млрд. лет назад, но на Земле ее следы почти стерты последующими событиями. Позднее бомбардировки меньших масштабов повторялись с определенной периодичностью. Учет сохранившихся метеоритных кратеров указывает на период около 30 млн. лет. Последствия бомбардировок могли быть различными—от обогащения редкими элементами (например, иридием, о котором речь еще впереди) до раскалывания коры, образои.шия в ней плотностных неоднородностей и даже нарушения вращения Земли от наиболее мощных ударов.

Бомбардировки, как указывает их периодичность, связаны с колебаниями Солнечной системы около плоскости Галактики и, вероятно, обусловлены гравитационным воздействием гигантских молекулярных скоплений, расстояние до которых то сокращается, то возрастает [Rampino, Sirothers, 1984]. Причем бомбардировки могли быть не единственным и, возможно, не самым существенным эффектом этих гравитационных возмущений. Для Земли наиболее важно нарушение ее орбитальных параметров, в частности скорости вращения, от которой зависит ее форма. При увеличении угловой скорости вращения Земля становится более сплюснутой, полярные области испытывают сжатие, экваториальные—расширение, при замедлении—наоборот. В расширяющихся областях кора растягивается и проседает, образуются гигантские зияющие трещины, из которых изливается базальтовая лава, покрывающая огромные площади. При сжатии глыбы коры громоздятся друг на друга, подобно льдинам, породы сминаются в складки. Кроме того, слои и глыбы разной плотности, имеющие различный момент инерции, испытывают вертикальные и горизонтальные смещения друг относительно друга. Массивы относительно легкой континентальной коры, окруженные плотной корой океанических областей, то всплывают, то погружаются, покрываясь мелководными морями. Так основные черты земной поверхности могут формироваться под влиянием скорости вращения.

Особенно важно в этом отношении взаимодействие Земли и Луны. Еще Э. Кант предположил, что приливное трение, вызванное Луной, замедляет вращение Земли. Математическая сторона теории приливного торможения была разработана Дж. Дарвином и другими учеными. В течение последних тысячелетий замедление составляет в среднем около двух миллисекунд в сто лет, с периодическими колебаниями.

Когда мы говорим о замедлении вращения Земли, то следует иметь в виду, что Земля неоднородна. Физические свойства резко меняются на некоторых границах внутри коры, между нею и мантией, между мантией и ядром, а также внутри ядра. По гипотезе автора [Красилов, 1985], эти границы разделяют слои с различной угловой скоростью вращения. Они получают различное ускорение при раскручивании или торможении Земли в целом. Приливное трение воздействует на земную кору, мантии же передается лишь часть торможения. Между ними возникает эффект проскальзывания — возможный источник напряжений, которые ответственны за подвижки блоков литосферы и образование магматических очагов. Восходящие потоки мантийного вещества, поднимаясь по разломам, переносят вращательный момент от мантии к коре, уравнивая скорость вращения и снимая геологический кризис.

Силы, о которых идет речь, едва ли достаточны для того, чтобы расколоть толстую литосферу (традиционное возражение против ротационной теории). Но ведь она уже расколота на блоки глубокими трещинами, возникшими на ранних стадиях ее развития, а это значительно облегчает дело.

Одним из подтверждений ротационной теории может служить установленная геофизиками корреляция между частотой землетрясений и 14-месячными циклами смещения полюсов. Колебания вксцентриситета орбиты, наклона эклиптики, прецессии с периодами около 96, 41, 24 тыс. лет также воздействуют на геологические процессы.

Отметим, что определенная периодичность наблюдается и в эволюции геомагнитного поля, влияющего на организмы и прямо, и косвенно—как климатический фактор и защита от облучения из космоса. Относительное спокойствие сменяется частыми переполюсовками, причем периоды знакопеременного поля (приблизительно совпадают с геологическими кризисами. Этому не приходится удивляться, поскольку ротационный механизм воздействует и на магнитное поле. Причиной его нестабильности может быть эффект проскальзывания между ядром и мантией или по разделам внутри ядра. Эти краткие сведения о геологических кризисах необходимы для понимания эволюции биосферы.
1   2   3   4   5   6   7   8   9   ...   19

Похожие:

Нерешенные проблемы теории эволюции iconВопросы к экзамену по дисциплине «Теория эволюции»
Предмет, цели и задачи теории эволюции. Основные принципы и методы изучения эволюции

Нерешенные проблемы теории эволюции iconОпровержения теории эволюции
Эволюционисты рисуют вымышленные создания, однако отсутствие останков, свидетельствующих о подлинности этих существ, озадачивает...

Нерешенные проблемы теории эволюции iconИсследования профессора Г. Эндерляйна с точки зрения современной науки
Теория эволюции остается центральной темой в современном естествознании, которая объединяет все направления биологии. Современную...

Нерешенные проблемы теории эволюции iconФилософские проблемы областей научного знания. Философские проблемы физики
Философские проблемы пространства и времени в квантовой физике и теории относительности

Нерешенные проблемы теории эволюции iconБлагодарности
Шесть универсальных принципов, вытекающих из теории эволюции путем естественного отбора

Нерешенные проблемы теории эволюции iconЛекции 1, 3,12: Введение: зачем знания по иммунобиологии нужны небиологам?
Лекции 1, 3,12: «Введение: зачем знания по иммунобиологии нужны небиологам?», «Врожденный иммунитет – от бактерий до человека», «Нерешенные...

Нерешенные проблемы теории эволюции iconIii международный юридический форум «Правовая защита интеллектуальной...
Приглашаем Вас принять участие в III международном юридическом форуме «Правовая защита интеллектуальной собственности: проблемы теории...

Нерешенные проблемы теории эволюции iconПрограмма по микроэкономике Тема Общие проблемы экономической теории...
Потребности и ресурсы, их взаимосвязь. Основные проблемы использования ограниченных ресурсов

Нерешенные проблемы теории эволюции iconПроблемы труда с момента зарождения социологии в России в середине...
России в середине XIX в были в числе ведущих. В ее эволюции следует выделить три исторических периода, каждый из которых отмечен...

Нерешенные проблемы теории эволюции iconОтвет к Проблемы общей теории права и государства (курс 1), 4228...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов