Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи)




Скачать 122.2 Kb.
НазваниеУровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи)
Дата публикации15.07.2013
Размер122.2 Kb.
ТипАнализ
zadocs.ru > Математика > Анализ
Общая характеристика содержания комплектов билетов, требований к уровню подготовки выпускников основной школы.

Особенности проведения устного экзамена.
Как было сказано выше, устный экзамен по геометрии является экзаменом по выбору, и это определяет его цели и структуру.
Целью устного экзамена является проверка уровня предметной компетентности учащихся 9 классов по геометрии за курс основной школы

в рамках проведения итоговой аттестации.
Отличие геометрии от всех других образовательных предметов состоит в том, что ее содержание практически не меняется в течение многих веков и основные цели ее изучения также остаются неизменными:
^ 1. Развитие пространственных представлений, что в требованиях, предъявляемых к знаниям и умениям учащихся стандартом, формулируется

как умение:

• читать и делать чертежи, необходимые для решения;

• выделять необходимую конфигурацию при чтении чертежа;

• определять необходимость дополнительных построений при решении задач и выполнять их;

• различать взаимное расположение геометрических фигур.
^ 2. Формирование и развитие логического мышления, что в требованиях, предъявляемых к знаниям и умениям учащихся стандартом, формулируется как владение методами доказательств, применяемыми при обосновании геометрических утверждений (теорем, лемм, следствий и т.д.), а также при проведении аргументации и доказательных рассуждений в ходе решения задач.


Устный экзамен рассчитан на выпускников 9 классов общеобразовательных учреждений (школ, лицеев, гимназий).
Анализ содержания стандарта с точки зрения полноты проверки уровня сформированности изложенных выше требований и минимизации собственно объема содержания, выносимого на итоговую аттестацию, позволяет утверждать: такую проверку наиболее четко и в явном виде можно провести на содержании разделов«Геометрические фигуры и их свойства», «Измерение геометрических величин», «Векторы» и двух темах раздела «Геометрические преобразования» (равенство и подобие фигур).
Конкретизация содержания, выносимого на государственную итоговую аттестацию, и его детализация определяются в каждом разделе теоремами, в которых сформулированы свойства и признаки фигур, отношения между фигурами, и формулами, которые позволяют находить значения геометрических величин.
Выделенное содержание, выносимое на итоговую аттестационную проверку, определяет конкретное число теоретических вопросов. При этом все вопросы разделены на две группы. Вопросы первой группы более простые и соответствуют уровню базовой подготовки, а вопросы второй группы отвечают продвинутому уровню усвоения.

^ Структура экзаменационного билета.
Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи).
4.1. Теоретическая часть.

П е р в ы й к о м п л е к т.

Принципиальными являются различия в уровне сложности первого и второго теоретических вопросов, а также в требованиях, предъявляемых к ответу.
^ Первый вопрос. Базовый уровень.

В первом вопросе от учащихся требуется выполнить одно из трех возможных заданий: первое – дать определение фигуры; второе – воспроизвести одну из формул для вычисления длин отрезков, градусных мер углов, площадей; третье – воспроизвести формулировку одной из теорем о свойствах или признаках фигур, их элементов, отношениях фигур.
При ответе на первый вопрос учащиеся должны:
В первом случае дать четкое определение фигуры, включающее в себя как вербальное определение, так и графическое – чертеж, а также привести пример применения этого определения, верно иллюстрирующий его смысл.
Во втором случае правильно воспроизвести одну из формул для вычисления значений геометрических величин (длин, углов, площадей), при этом, кроме записи формулы, необходимо выполнить чертеж и объяснить смысл формулы. Привести пример применения этой формулы, позволяющий сделать вывод об уровне сформированности умения применять эту формулу.
В третьем случае воспроизвести формулировку теоремы, проиллюстрировав содержание теоремы выполнением чертежа; привести пример применения этой теоремы, верно отражающий ее содержание и смысл.
^ Второй вопрос. Продвинутый уровень.

Во втором вопросе учащиеся должны, как правило, дать определение фигуры, сформулировать ее свойство или признак, указанный в теореме, и доказать эту теорему.
При ответе на второй вопрос учащиеся должны:

• дать определение фигуры, включающее в себя как вербальное определение, так и графическое – чертеж;

• правильно воспроизвести формулировку теоремы, проиллюстрировав ее выполнением чертежа по условию теоремы;

• привести доказательство теоремы, при этом доказательство считается выполненным верно, если учащийся правильно привел схему доказательства, обосновал все логические шаги, выполнил чертежи, которые правильно отражают, кроме условия, еще и ход доказательства.


Практическая часть. Третий и четвертый вопросы билета – задачи. Цель включения этих заданий – проверка овладения учащимися основными практическими умениями, полученными в ходе изучения курса.
^ Целью третьих вопросов (задач) является проверка уровня сформированности пространственных представлений, и эти задания соответствуют уровню базовой подготовки.
С помощью заданий третьих вопросов проверяются знание и понимание важных элементов содержания (геометрических понятий, свойств основных фигур, отношений между фигурами, методов доказательств и пр.), владение основными формулами, умение применять полученные знания к решению геометрических задач. При выполнении этих заданий учащиеся также должны продемонстрировать определенную системность знаний и широту представлений, узнавать стандартные задачи в разнообразных формулировках.
^ Целью четвертых вопросов (задач) является проверка уровня сформированности логического мышления или логической интуиции. Проверка уровня сформированности логического мышления может быть осуществлена не только и не столько при решении задач уровня базовой подготовки, но и в значительной степени при решении задач повышенного уровня подготовки.
Эти задачи проверяют, насколько ученик способен излагать свои мысли математически грамотно, приводить аргументы и вести рассуждение. Эти задания сложнее, их решения требуют более глубокого уровня усвоения изученного материала.
^ Время подготовки выпускника. Система оценивания ответа.

Примерное время, отводимое на подготовку выпускника к ответу, – 30–35 минут, независимо от выбранного комплекта билетов.
Оценивание ответа осуществляется по традиционной пятибалльной шкале, что обусловлено отсутствием единой процедуры проведения устного экзамена в регионах. В одних случаях устный опрос производится по вопросам теории, а решения задач предъявляются комиссии без комментариев в письменной форме, в других случаях у доски рассматривается подробное решение задач с ссылками на все используемые факты, а теория оценивается по представленным записям.
Для получения положительной отметки «3» ученик должен верно ответить на первый вопрос и решить одну из задач, возможно с некоторыми незначительными недочетами, или ответить только на вопросы теоретической части.
^ Отметка «4» ставится, если ученик ответил на теоретические вопросы и решил задачу базового уровня подготовки или ответил только на один теоретический вопрос и при этом решил обе задачи.

^ Отметка «5» ставится, если ученик ответил на теоретические вопросы и решил задачу повышенного уровня подготовки или ответил на теоретические вопросы и решил обе задачи, возможно с незначительными недочетами.

Во всех остальных случаях ставится отметка «2».
Комплект билетов по геометрии

для выпускников 9 классов общеобразовательных

учреждений Российской Федерации
Билет № 1

1. Сформулируйте определение окружности, вписанной в треугольник. Сформулируйте теорему о центре вписанной окружности. Приведите пример применения теоремы о центре вписанной окружности.

2. Сформулируйте определение трапеции. Сформулируйте определение средней линии трапеции. Сформулируйте и докажите теорему о средней линии трапеции.

3. Задача: Сторона правильного шестиугольника, описанного около окружности, равна 2 см. Найдите сторону правильного треугольника, вписанного в эту окружность.
Билет № 2

1. Сформулируйте определение синуса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников.

2. Сформулируйте определение равнобедренного треугольника. Сформулируйте и докажите признак равнобедренного треугольника.

3. Задача: Стороны треугольника равны 3 см, 2 см и √3 см. Определите вид этого треугольника.
Билет № 3

1. Сформулируйте теорему Фалеса. Приведите пример ее применения.

2. Сформулируйте определение равнобедренного треугольника. Сформулируйте и докажите свойство углов при основании равнобедренного треугольника.

3. Задача: Угол между высотами BK и BL параллелограмма АВСD, проведенными из вершины его острого угла B, в четыре раза больше самого угла АВС. Найдите углы параллелограмма.
Билет № 4

1. Сформулируйте определение окружности. Приведите формулу длины окружности. Приведите формулу длины дуги окружности. Приведите примеры применения либо формулы длины окружности, либо формулы длины дуги окружности.

2. Сформулируйте определение медианы треугольника. Сформулируйте и докажите свойство медианы равнобедренного треугольника.

3. Задача: Сторона ромба равна 10, а один из его углов равен 30°. Найдите радиус окружности, вписанной в ромб.

Билет № 5

1. Сформулируйте неравенство треугольника. Приведите пример его применения.

2. Сформулируйте определение параллелограмма. Сформулируйте и докажите свойство диагоналей параллелограмма.

3. Задача: Найдите больший угол треугольника, если две его стороны видны из центра описанной окружности под углами 100° и 120°.


Билет № 6

1. Приведите формулы площади прямоугольника и площади параллелограмма. Приведите примеры применения площади прямоугольника либо площади параллелограмма.

2. Сформулируйте определение равных треугольников. Сформулируйте признаки равенства треугольников и докажите один из них по выбору.

3. Задача: Определите вид четырехугольника, вершины которого являются серединами сторон произвольного выпуклого четырехугольника.
Билет № 7

1. Приведите формулы для радиусов вписанных и описанных окружностей правильных многоугольников. Приведите пример их применения для n-угольников для любого n ≤6 (n определяет учащийся).

2. Сформулируйте определение параллельных прямых. Сформулируйте аксиому параллельных прямых. Сформулируйте признаки параллельности прямых и докажите один из них по выбору.

3. Задача: В трапеции ABCD диагональ BD является биссектрисой прямого угла ADC. Найдите отношение диагонали BD к стороне AB трапеции, если угол BAD = 30°.
Билет № 8

1. Сформулируйте определения круга и сектора. Приведите формулы площади круга и площади сектора. Приведите пример применения одной из формул: либо площади круга, либо площади сектора по выбору учащегося.

2. Сформулируйте определение прямоугольного треугольника. Сформулируйте и докажите теорему Пифагора.

3. Задача: Площадь треугольника, описанного около окружности, равна см2. Найдите периметр треугольника, если радиус окружности равен 7 см.
Билет № 9

1. Сформулируйте определение окружности, описанной около треугольника. Сформулируйте теорему о центре описанной окружности. Приведите пример применения теоремы о центре описанной окружности.

2. Сформулируйте определение средней линии треугольника. Сформулируйте и докажите теорему о средней линии треугольника.

3. Задача: Из вершины B в треугольнике ABC проведены высота BH и биссектриса BD. Найдите угол между высотой BH и биссектрисой BD, если углы BAC и BCA равны 20° и 60° соответственно.
Билет № 10

1. Сформулируйте теорему о сумме углов треугольника. Приведите пример ее применения.

2. Сформулируйте определение ромба. Сформулируйте и докажите свойство диагоналей ромба.

3. Задача: Внутри равностороннего треугольника ABC отмечена точка D, такая, что Угол BAD = углу BCD = 15°. Найдите угол ADC.

Билет № 11

1. Сформулируйте определение выпуклого многоугольника. Сформулируйте теорему о сумме углов выпуклого многоугольника. Приведите пример ее применения.

2. Сформулируйте определение прямоугольника. Сформулируйте и докажите свойство диагоналей прямоугольника.

3. Задача: Через вершины А, В и С ромба АВСО проведена окружность, центром которой является вершина О. Найдите длину дуги АС, содержащей вершину В, если длина всей окружности равна 30 см.

Билет № 12

1. Приведите формулы площади треугольника. Приведите примеры их применения.

2. Сформулируйте определение параллелограмма. Сформулируйте и докажите признак параллелограмма по выбору учащегося.

3. Задача: Точки A, B и C делят окружность на три части так, что
Билет № 13

1. Сформулируйте определение тангенса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников.

2. Сформулируйте определение параллелограмма. Сформулируйте и докажите свойства углов и сторон параллелограмма.

3. Задача: Длины двух сторон равнобедренного треугольника равны соответственно 6 см и 2 см. Определите длину третьей стороны этого треугольника.
Билет № 14

1. Сформулируйте определение внешнего угла треугольника. Сформулируйте теорему о свойстве внешнего угла треугольника. Приведите пример ее применения.

2. Сформулируйте и докажите теорему косинусов. Приведите пример ее применения для решения треугольников.

3. Задача: Стороны треугольника равны 4 см, 5 см и 8 см. Найдите длину медианы, проведенной из вершины большего угла.

Билет № 15

1. Приведите формулу площади трапеции. Приведите пример ее применения.

2. Сформулируйте определение равных треугольников. Сформулируйте признаки равенства прямоугольных треугольников и докажите один из них по выбору.

3. Задача: Большая диагональ ромба равна 12 см, а один из его углов равен 60°. Найдите длину вписанной в него окружности.
Билет № 16

1. Сформулируйте теорему о зависимости между сторонами и углами треугольника. Приведите пример ее применения.

2. Сформулируйте определение подобных треугольников. Сформулируйте признаки подобия треугольников и докажите один из них по выбору.

3. Задача: Найдите меньший угол параллелограмма, если его стороны равны 1 и √3, а одна из диагоналей равна √ 7.


Билет № 17

1. Сформулируйте определение вектора. Сформулируйте определение суммы векторов. Сформулируйте свойства сложения векторов. Приведите примеры сложения векторов.

2. Сформулируйте и докажите теорему синусов. Приведите пример ее применения для решения треугольников.

3. Задача: Вписанный угол, образованный хордой и диаметром окружности, равен 72°. Определите, что больше: хорда или радиус окружности.

Билет № 18

1. Сформулируйте определение вектора. Сформулируйте определение произведения вектора на число. Сформулируйте свойства произведения вектора на число. Приведите примеры произведения вектора на число.

2. Сформулируйте определения центрального угла окружности и угла, вписанного в окружность. Сформулируйте и докажите теорему об измерении вписанного угла.

3. Задача: Медиана ВМ треугольника АВС перпендикулярна его биссектрисе АD. Найдите АВ, если АС = 12 см.
Билет № 19

1. Сформулируйте определение скалярного произведения векторов и определение угла между векторами. Приведите пример применения скалярного произведения векторов для определения угла между векторами.

2. Сформулируйте определение серединного перпендикуляра к отрезку. Сформулируйте и докажите свойство серединного перпендикуляра к отрезку.

3. Задача:


Билет № 20

1. Сформулируйте свойство углов, образованных при пересечении параллельных прямых секущей. Приведите пример вычисления углов при пересечении параллельных прямых секущей.

2. Сформулируйте теоремы о пропорциональных отрезках в прямоугольном треугольнике и докажите один из них по выбору.

3. Задача: Из точки, лежащей на гипотенузе равнобедренного прямоугольного треугольника, на катеты треугольника опущены перпендикуляры. Найдите катет треугольника, если периметр полученного четырехугольника равен 12 см.

Билет № 21

1. Сформулируйте определение косинуса острого угла прямоугольного треугольника. Приведите пример его применения при решении прямоугольных треугольников.

2. Сформулируйте определение биссектрисы угла. Сформулируйте и докажите свойство биссектрисы треугольника.

3. Задача: Площадь ромба ABCD равна 242√2. Вычислите сторону ромба, если один из его углов равен 135°.

Добавить документ в свой блог или на сайт

Похожие:

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconДля 4 курса менеджеров два теоретических вопроса + практическая ситуация...
Для 4 курса менеджеров два теоретических вопроса + практическая ситуация 3 вопросом!!!!!!!!!!!!!!!!!!!!!!!!!

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconМетодические рекомендации и варианты контрольных работ для студентов...
Дать ответы на два теоретических вопроса и оформить их с использованием текстового процессора ms word

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) icon«Экономика товарного обращения» Задания на контрольные работы для...
Контрольная работа выполняется индивидуально каждым студентом в виде ответов на два теоретических вопроса и решения задачи. Задания...

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconБилеты по литературе 9 класс
На этапе окончания основной школы девятиклассники, выбравшие экзамен по литературе, сдают его, как правило, в устной форме (собеседование,...

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconКодексы корпоративной социальной ответственности компаний. Понятие. Подходы. Определения
Для выполнения контрольной работы раскройте в письменной форме ответы на 3 вопроса (номер 1-го вопроса соответствует последней цифре...

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconКраткое содержание курса
Каждая контрольная работа состоит из теоретических вопросов, задач или тестовых вопросов. Прежде чем перейти к их выполнению, студенту...

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconП/п Формулировка вопроса (задания)
Наука материаловедение. Основные понятия, цели и задачи курса «Материаловедение»

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) icon-
Узнай, да смилостивится над тобой Аллах, что каждый из нас обязательно должен изучить четыре вопроса

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconПеречень теоретических вопросов (1 вопрос билета)
Операционная система Windows. Структура и особенности ос. Принципы работы в операционной системе Windows

Уровню усвоения. Структура экзаменационного билета. Билеты каждого комплекта содержат четыре вопроса по различным темам курса (два теоретических вопроса и две задачи) iconОтечественная история тестирования
На экзамене давались один-два сравнительно объемных вопроса, ответ на которые должен был свидетель­ствовать об уровне знаний всего...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов