Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки




НазваниеРавноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки
страница10/10
Дата публикации25.12.2013
Размер1.16 Mb.
ТипДокументы
zadocs.ru > Математика > Документы
1   2   3   4   5   6   7   8   9   10

Напряжённость магни́тногопо́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В Международной системе единиц (СИ) где  — магнитная постоянная.

В системе СГС

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

[править]Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

58. Закон полного тока для магнитного поля в вакууме(теорема о циркуляции вектора В).

В разделе “Электростатика” было доказано, что циркуляция вектора напряженности электростатического поля вдоль замкнутого контура равна нулю, откуда следует потенциальный характер электростатического поля. Одним из основных отличий магнитного поля от электростатического поля является его непотенциальность. Для доказательства этого рассмотрим линейный интеграл от В по замкнутому пути в магнитном поле, создаваемом током, т.е.













где – вектор элемента длины контура, направленный вдоль обхода контура; Вℓ – проекция  вектора  на направление касательной к контуру. Данный интеграл называется циркуляцией вектора   по заданному замкнутому контуру ℓ.

 Рассмотрим частный случай: круговой путь ℓ является силовой линией радиуса R магнитного поля прямолинейного бесконечного проводника с током (рис.1.9). Магнитная индукция для этого случая была подсчитана ранее, и во всех точках окружности вектор  составляет:













Угол между векторами  и  равен нулю, поэтому cos(,)=1. Из полученного результата следует, что циркуляция вектора магнитной индукции вдоль силовой линии прямолинейного проводника с током не равна нулю, т.е. поле такого проводника непотенциально. Оно называется вихревым. Полученная формула справедлива для любой формы замкнутого контура, охватывающего проводник с током.

Пусть теперь наш контур ℓ произвольной формы охватывает n проводников с токами I1, …In. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. При этом положительным считается ток, если он с направлением обхода контура образует правовинтовую систему. Ток противоположного направления считается отрицательным.

Разберем пример, изображенный на рис.1.12. Найдем сумму токов, т.е. полный ток, охватываемый контуром ℓ:













Ток I3 не учитывается, т.к. он не охватывается контуром. В результате имеем














 Таким образом, циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром:














Данное выражение представляет собой закон полного тока для магнитного поля в вакууме, или теорему о циркуляции вектора В.

Все вышерассмотренное относится к вакууму. Можно доказать, что циркуляция вектора  вдоль замкнутого контура, не охватывающего проводник с током, равна нулю.

Рассмотренная нами теорема имеет в магнитостатике такое же значение, как теорема Гаусса в электростатике. Она позволяет находить магнитную индукцию различных полей без применения закона Био-Савара-Лапласа.

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Аналогично определению электрического потока, или числа силовых линий Е, пересекающих поверхность S, определим магнитный поток, поток вектора магнитной индукции, или число силовых линий , пересекающих поверхность S. Потоком вектора магнитной индукции через элементарную площадку dS называется физическая величина dФm, равная произведению величины этой площадки и проекции вектора В на направление нормали к площадке dS (рис. 1.13):














Интегрируя это выражение по S, получим магнитный поток Фm сквозь произвольную замкнутую поверхность S: .

Для однородного поля и плоской поверхности, расположенной перпендикулярно В, поток рассчитывают по формуле Ф = ВS, из которой можно определить единицу магнитного потока, которая называется вебер (Вб). 1 Вб – это такой магнитный поток, который проходит через плоскую поверхность площадью 1 м2, расположенную перпендикулярно магнитному полю, индукция которого равна 1Тл: 1Вб=1Тл∙1 м2.

 Мы уже знаем, что силовые линии магнитного поля замкнуты. Поэтому, интеграл ∫ Вds по любой замкнутой поверхности должен быть равен нулю, так как внутрь поверхности входит тот же поток, что и выходит из нее. Если имеется k токов, то создаваемый ими магнитный поток:  













Здесь Вn - проекция В на нормаль к ds. Поскольку каждый интеграл по отдельности равен нулю, то и













вышеизложенное составляет суть теоремы Гаусса для потока магнитного поля Фm. Поток магнитного поля через любую замкнутую поверхность равен нулю. Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Во всех точках пространства, окружающего произвольный проводник с током, всегда существует обусловленное этим током поле сил. Это поле называется магнитным полем тока. Термин «магнитное поле» был введен английским физиком М. Фарадеем, считавшим, что как электрические, так и магнитные взаимодействия осуществляются посредством единого материального поля. 
1   2   3   4   5   6   7   8   9   10

Похожие:

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconФизические основы механики
Равномерное движение, вычисление пройденного пути при равномерном движении. Равноускоренное движение, вычисление пройденного пути,...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconВопросы по курсу общей и экспериментальной физики, раздел “механика”
Системы отсчета (их выбор). Материальная точка. Движение материальной точки. Вектор перемещения. Относительность движений. Скорость...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconТраектория, путь, перемещение. Скорость, ускорение мат точки. Виды...
Равноускоренное прямолинейное движение. Координата, скорость, ускорение, их графики. Движение в поле силы тяжести

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconВопросы итогового экзамена по физике
Механическое движение. Относительность движения. Равномерное и равноускоренное прямолинейное движение

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки icon10 класс Билеты по физике
...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconМеханическое движение. Относительность движения. Система отсчета....

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconП лан ответа
Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость....

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки icon1. Движение двух материальных точек выражаются следующими уравнениями: X
Движение двух материальных точек выражаются следующими уравнениями: x1 = A1 + B1t + C1t2, x2 = A2 + B2t + C2t2, где A1 = 20 м; A2...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconЭкзаменационные вопросы: Раздел I механика система отсчета Материальная...
Понятия скорости и ускорения. Скорость и ускорение материальной точки при прямолинейном и криволинейном движении. Нормальное и тангенциальное...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconМатериальная точка. Система отсчета. Кинематическое уравнение движения...
Размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов