Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки




НазваниеРавноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки
страница8/10
Дата публикации25.12.2013
Размер1.16 Mb.
ТипДокументы
zadocs.ru > Математика > Документы
1   2   3   4   5   6   7   8   9   10

При́нципсуперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.
36.Работа электростатического поля. Теорема о циркуляции вектора Е. Потенциал и разность потенциалов.

При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении  равна: 



Рассмотрим работу сил в электрическом поле, создаваемом неизменным во времени распределенным зарядом, т.е. электростатическом поле

Электростатическое поле обладает важным свойством:

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.

Следствием независимости работы от формы траектории является следующее утверждение:

^ Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными.

На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда ^ Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение  Работа ΔA кулоновских сил на этом перемещении равна 



Таким образом, работа на малом перемещении зависит только от расстояния r между зарядами и его изменения Δr. Если это выражение проинтегрировать на интервале отr = r1 до r = r2, то можно получить 



Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов  то при перемещении пробного заряда q работа A результирующего поля в соответствии спринципом суперпозиции будет складываться из работ  кулоновских полей точечных зарядов:  Так как каждый член суммы  не зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q, помещенного в эту точку, принимается равной нулю.

^ Потенциальная энергия заряда q, помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A10, которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):

Wp1 = A10.




(В электростатике энергию принято обозначать буквой ^ W, так как буквой E обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.

Работа, совершаемая электростатическое полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

A12 = A10 + A02 = A10 – A20 = Wp1 – Wp2.




Потенциальная энергия заряда q, помещенного в электростатическое поле, пропорциональна величине этого заряда.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называютпотенциалом φ электрического поля:






Потенциал φ является энергетической характеристикой электростатического поля.

Работа ^ A12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов 1 – φ2) начальной и конечной точек: 

A12 = Wp1 – Wp2 = qφ1 – qφ2 = q1 – φ2).

В Международной системе единиц (СИ) единицей потенциала является вольт (В). 

1 В = 1 Дж / 1 Кл.

Во многих задачах электростатики при вычислении потенциалов за опорную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:

Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.






Потенциал φ поля точечного заряда ^ Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом: 



Как следует из теоремы Гаусса, эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r ≥ R, где R – радиус шара.

Для наглядного представления электростатическое поля наряду с силовыми линиями используют эквипотенциальные поверхности.

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала.
37. Электрический диполь, дипольный электрический момент Электрическое поле диполя.

Дипо́ль — идеализированная система, служащая для приближённого описания поля, создаваемого вообще говоря более сложными системами зарядов, а также для приближенного описания действия внешнего поля на такие системы. Дипольное приближение, выполнение которого обычно подразумевается, когда говорится о поле диполя, основано на разложении потенциалов поля в ряд по степеням радиус-вектора, характеризующего положение зарядов-источников, и отбрасывании всех членов выше первого порядка[1]. Полученные функции будут эффективно описывать поле в случае, если:

размеры излучающей поле системы малы по сравнению с рассматриваемыми расстояниями, так что отношение характерного размера системы к длине радиус-вектора является малой величиной и имеет смысл рассмотрение лишь первых членов разложения потенциалов в ряд;

член первого порядка в разложении не равен 0, в противном случае нужно использовать приближение более высокой мультипольности;

в уравнениях рассматриваются градиенты потенциалов не выше первого порядка.

Типичный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся друг от друга на расстоянии, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

38. Поток вектора напряженности электрического поля. Теорема Гаусса в интегральной и дифференциальных формах для электростатического поля в вакууме. Примеры расчета по теореме Гаусса.

Пусть в некоторой области пространства известно векторное поле напряженности электростатического поля . Допустим, что в окрестности фиксированной точки пространства имеется элемент поверхности площади , ориентацию которого можно задать с помощью вектора единичной (безразмерной) нормали  к этому элементу поверхности. Поскольку элемент поверхности является двусторонним объектом, то направление нормали можно выбрать произвольно. Введем в рассмотрение объект

     

,

(1.42)

     вектор элемента площади поверхности. В соответствии с (1.42) этот вектор численно равен площади элемента поверхности, имеет размерность площади и направлен вдоль , то есть вдоль нормали к элементу поверхности.

      Элемент потока вектора  через площадку  по определению равен скалярному произведению вектора  и вектора :

     

.

(1.43)






Рис. 1.6.
Элементарный поток вектора напряженности электростатического поля


     Угол  в выражении (1.43) измеряется между направлением вектора  и направлением нормали  к площадке . При , то есть при , значение элемента потока вектора максимально, а при  элемент потока обращается в нуль. Это свойство элемента потока легко понять, если привлечь понятие силовой линии векторного поля. В первом случае силовые линии перпендинулярны площадке , а во втором случае они "скользят" вдоль площадки, не пересекая ее. Заметим, что , если угол - тупой.

      Если рассматривать поверхность конечных (или бесконечных) размеров, то можно определить поток вектора  через эту поверхность:

     

.

(1.44)

     В определении (1.44) подразумевается, что поверхность  достаточно гладкая, направления нормалей к двум соседним элементам поверхности не сильно различаются между собой. Последнее означает, что все элементы поверхности  построены "на одной стороне" поверхности . В случае бесконечных размеров поверхности , а иногда и для поверхности конечных размеров, встает вопрос о существовании интеграла (1.44).

      Если поверхность  является замкнутой поверхностью, то, как правило, поток вектора через поверхность  рассчитывают с использованием внешней нормали по отношению к объему, заключенному внутри поверхности :

     

,

(1.45)

     где кружок у интеграла означает, что поверхность - замкнутая.

      Поток вектора напряженности электростатического поля через замкнутую поверхность обладает специфическим свойством: его величина пропорциональна электрическому заряду, расположенному внутри этой поверхности. Это утверждение составляет физический смысл теоремы Гаусса. Теорема Гаусса для вектора напряженности электростатического поля  в вакууме является следствием закона Кулона. Теорема Гаусса имеет большое значение в теории электромагнетизма. Доказательство ее справедливости включает три этапа.

      Первый этап. Допустим, что в начале координат помещен точечный электрический заряд .

      Напряженность электрического поля, созданного этим зарядом, описывается соотношением:

     

,

(1.46)

     где - радиус-вектор точки наблюдения,  - его модуль. Окружим заряд  сферой радиуса , центр которой совпадает с началом координат. Известно, что внешняя нормаль  к элементу поверхности  сферы направлена по радиусу:

     

.

(1.47)

     Поток вектора  через поверхность сферы равен:

     

.

(1.48)

     Запомним этот результат.

      Второй этап. Пусть поверхность  является произвольной достаточно гладкой замкнутой поверхностью, причем начало координат - место расположения заряда  - лежит внутри поверхности . Заметим, что

     

,


39.Проводник в электростатическом поле. Распределение зарядов в проводнике. Электростатическая защита. Поле вблизи поверхности проводника.

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводникидиэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда- способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Ограничим рассмотрение твердыми металлическими проводниками, имеющимикристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.

В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.

При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е'.

Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:



Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:



где Е - напряженность результирующего поля внутри проводника; n - внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение: .

Полученные результаты позволяют сделать три важных вывода:
1. Во всех точках внутри проводника напряженность поля , т. е. весь объем проводника эквипотенциален.
2. При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности , в противном случае под действием касательной к поверхности проводника компоненты напряженности  заряды должны перемещаться по проводнику.
3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

 

40. Поляризация диэлектриков. Поляризованность и ее связь с напряженностью электрического поля.

Диэлектрик, помещенный во внешнее электрическое поле, поляризуется под действием этого поля. Поляризацией диэлектрика называется процесс приобретения им отличного от нуля макроскопического дипольного момента.

Степень поляризации диэлектрика характеризуется векторной величиной, которая называется поляризованостью или вектором поляризации (P). Поляризованность определяется как электрический момент единицы объема диэлектрика

,

где N - число молекул в объеме . Поляризованность P часто называют поляризацией, понимая под этим количественную меру этого процесса.

В диэлектриках различают следующие типы поляризации: электронную, ориентационную и решеточную (для ионных кристаллов).

Электронный тип поляризации
 характерен для диэлектриков с неполярными молекулами. Во внешнем электрическом поле (рис. 2.1) положительные заряды внутри молекулы смещаются по направлению поля, а отрицательные в противоположном направлении, в результате чего молекулы приобретают дипольный момент, направленный вдоль внешнего поля 



Индуцированный дипольный момент молекулы пропорционален напряженности внешнего электрического поля , где  - поляризуемость молекулы. Значение поляризованности в этом случае равно , где n - концентрация молекул ;  - индуцированный дипольный момент молекулы, который одинаков для всех молекул и направление которого совпадает с направлением внешнего поля.

Ориентационнный тип поляризации характерен для полярных диэлектриков. В отсутствие внешнего электрического поля молекулярные диполи ориентированы случайным образом, так что макроскопический электрический момент диэлектрика равен нулю.



Если поместить такой диэлектрик во внешнее электрическое поле, то на молекулу-диполь будет действовать момент сил (рис. 2.2), стремящийся ориентировать ее дипольный момент в направлении напряженности поля. Однако полной ориентации не происходит, поскольку тепловое движение стремится разрушить действие внешнего электрического поля.

Такая поляризация называется ориентационной. Поляризованность в этом случае равна , где <p> - среднее значение составляющей дипольного момента молекулы в направлении внешнего поля.

Решеточный тип поляризации характерен для ионных кристаллов. В ионных кристаллах (NaCl и т.д.) в отсутствие внешнего поля дипольный момент каждой элементарной ячейки равен нулю (рис. 2.3.а), под влиянием внешнего электрического поля положительные и отрицательные ионы смещаются в противоположные стороны (рис. 2.3.б). Каждая ячейка кристалла становится диполем, кристалл поляризуется. Такая поляризация называется решеточной. Поляризованность и в этом случае можно определить как , где - значение дипольного момента элементарной ячейки, n - число ячеек в единице объема. 



Поляризованность изотропных диэлектриков любого типа связана с напряженностью поля соотношением , где  - диэлектрическая восприимчивость диэлектрика.
^ 41)ТЕОРЕМА ГАУССА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИКЕ:

Поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов:

Для векторного поля справедлива интегральная форма теоремы Гаусса:

и, соответственно, дифференциальная форма теоремы Гаусса:

где - объемная плотность свободных зарядов.

Для описания электрического поля, в частности, в диэлектрике, вводят в рассмотрение вектор электрического смещения (вектор электростатической индукции) , равный

- ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ среды =>

^ 42)условия на границе раздела двух диэлектриков.

1)нормальная составляющая вектора напряженности электрического поля при переходе через границу двух диэлектриков претерпевает разрыв.

^ 2)тангенциальная составляющая вектора напряженности электрического поля при переходе через границу двух диэлектриков непрерывна.

3)Нормальная составляющая вектора электрического смещения при перехо-

де через границу двух диэлектриков непрерывна.

4)Тангенциальная составляющая вектора электрического смещения при переходе через границу двух диэлектриков претерпевает разрыв.

5)при переходе через границу раздела двух диэлектриков линии вектора напряженности электрического поля и линии электрического смещения преломляются.
^ 43) Конденсатор — это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.По типу используемого диэлектрика конденсаторы называются бумажными, слюдяными, полистирольными, керамическими, воздушными.

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора: Единица электроемкости в международной системе — фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл.

^ Электроемкость плоского конденсатора. Напряженность поля между двумя пластинами плоского конденсатора равна сумме напряженностей полей, создаваемых каждой из пластин:

Для однородного электрического поля связь между напряженностью и напряжением U дается выражением , где d — в данном случае расстояние между пластинами, U — напряжение на конденсаторе.

Электроемкость конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между обкладками.

При введении диэлектрика между обкладками конденсатора его электроемкость увеличивается в раз:

^ 44) Зарядим конденсатор и затем подключим к его выводам электрическую лампу. При подключении лампы наблюдается кратковременная вспышка света. Из этого опыта следует, что заряженный конденсатор обладает энергией.

Если на обкладках конденсатора электроемкостью C находятся электрические заряды + q и - q, то напряжение между обкладками конденсатора равно

В процессе разрядки конденсатора напряжение между его обкладками убывает прямо пропорционально заряду q от первоначального значения U до 0.

Среднее значение напряжения в процессе разрядки равно

Для работы А, совершаемой электрическим полем при разрядке конденсатора, будем иметь:

Следовательно, потенциальная энергия Wp конденсатора электроемкостью C, заряженного до напряжения U, равнаЭнергия конденсатора обусловлена тем, что электрическое поле между его обкладками обладает энергией. Напряженность E поля пропорциональна напряжению U, поэтому энергия электрического поля пропорциональна квадрату его напряженности.

Чтобы зарядить проводник от нуля до потенциала φ, необходимо совершить работу

^ Энергия заряженного проводника

полная энергия системы заряженных проводников

объемная плотность энергии электрического поля-Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеемС учетом, что и

или

Энергия электрического поля.

45)Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

^ Основные понятия.

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I - сила тока, q - величина заряда (количество электричества), t - время прохождения заряда.

Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока, S - площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда. где A - полная работа сторонних и кулоновских сил, q - электрический заряд.

Электрическое сопротивление - физическая величина, характеризующая электрические свойства участка цепи.где ρ - удельное сопротивление проводника, l - длина участка проводника, S - площадь поперечного сечения проводника.

Проводимостью называется величина, обратная сопротивлениюгде G - проводимость.

^ Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.
46) В замкнутой цепи наряду с участками, на которых положительные заряды движутся в сторону убывания потенциала, должны иметься участки, на которых перенос положительных зарядов происходит в направлении возрастания  , т.е. против сил электростатического поля. Перемещение, зарядов на этих участках возможно лишь с помощью сил не электростатического происхождения, называемых сторонними силами.

ЭДС- Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в электрической цепи или на ее участке.

Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называютсяоднородными. Участки, включающие источники тока, называются неоднородными.

47) ^ Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника;

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:



^ МОЩНОСТЬ ПОСТОЯННОГО ТОКА

- отношение работы тока за время t к этому интервалу времени.



^ ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.



По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

Закон Джоуля-Ленца в интегральной форме получается из дифференциальной формы этого закона интегрированием по объему провода. Представив элемент объема в виде dV=S dl, получим Q=. Эта формула определяет тепло, выделяющееся ежесекундно в рассматриваемом участке провода. Если взять всю замкнутую цепь, то Q=. Отсюда видно, что тепло производится одними только сторонними силами. Роль электрического поля сводится к тому, что оно перераспределяет это тепло по различным участкам цепи.
1   2   3   4   5   6   7   8   9   10

Похожие:

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconФизические основы механики
Равномерное движение, вычисление пройденного пути при равномерном движении. Равноускоренное движение, вычисление пройденного пути,...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconВопросы по курсу общей и экспериментальной физики, раздел “механика”
Системы отсчета (их выбор). Материальная точка. Движение материальной точки. Вектор перемещения. Относительность движений. Скорость...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconТраектория, путь, перемещение. Скорость, ускорение мат точки. Виды...
Равноускоренное прямолинейное движение. Координата, скорость, ускорение, их графики. Движение в поле силы тяжести

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconВопросы итогового экзамена по физике
Механическое движение. Относительность движения. Равномерное и равноускоренное прямолинейное движение

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки icon10 класс Билеты по физике
...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconМеханическое движение. Относительность движения. Система отсчета....

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconП лан ответа
Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость....

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки icon1. Движение двух материальных точек выражаются следующими уравнениями: X
Движение двух материальных точек выражаются следующими уравнениями: x1 = A1 + B1t + C1t2, x2 = A2 + B2t + C2t2, где A1 = 20 м; A2...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconЭкзаменационные вопросы: Раздел I механика система отсчета Материальная...
Понятия скорости и ускорения. Скорость и ускорение материальной точки при прямолинейном и криволинейном движении. Нормальное и тангенциальное...

Равноускоренное движение отношение изменения скорости к потребовавшемуся для этого времени. Криволинейное движение материальной точки iconМатериальная точка. Система отсчета. Кинематическое уравнение движения...
Размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов