Элементы теории случайных процессов




НазваниеЭлементы теории случайных процессов
страница1/24
Дата публикации30.01.2014
Размер1.06 Mb.
ТипДокументы
zadocs.ru > Математика > Документы
  1   2   3   4   5   6   7   8   9   ...   24

Введение


Данное учебное пособие предназначено для методического обеспечения практических занятий и самостоятельной работы студентов в рамках курса «Теория случайных процессов», изучаемого на факультете прикладной математики и кибернетики. В пособии изложены основные понятия теории случайных процессов (вероятностные распределения и способы их описания). Описаны важнейшие модели марковских процессов с дискретным и непрерывным временем, методы их исследования и использования для решения прикладных задач, в том числе задач теории массового обслуживания. Рассмотрены решения многочисленных типовых примеров, приведены задачи для самостоятельного решения.
^

Глава 1. Элементы теории случайных процессов

Определение и описание случайного процесса


Случайные процессы являются удобной математической моделью функций времени, значения которых случайные величины. Например: число звонков, поступающих в единицу времени на телефонную станцию, являясь случайной величиной, зависит от времени суток; расход электроэнергии в единицу времени – тоже функция времени со случайными значениями; координаты броуновской частицы меняются со временем и принимают случайные значения. То есть можно сказать, что случайный процесс – это однопараметрическое семейство случайных величин, зависящих от значений параметра, имеющего смысл времени.

Пусть задано вероятностное пространство {,F,P}.

Случайная величина – это измеримая функция, отображающая это вероятностное пространство на борелевскую прямую {R,B}.

Рассмотрим теперь функцию, зависящую от двух аргументов (,t), , tT.

Определение. Функцию (,t) называют случайным процессом, если при  tT она является измеримой функцией аргумента , то есть случайной величиной.

При фиксированном значении параметра t, функция t() является случайной величиной, которую будем называть сечением случайного процесса в момент времени t.

Если зафиксировать некоторое элементарное событие , то получим неслучайную функцию времени – (t), которую будем называть реализацией случайного процесса.

Совокупность всех реализаций случайного процесса называется ансамблем реализаций.

В дальнейшем случайный процесс (,t) будем обозначать (t), где аргумент t имеет смысл времени

Пример 1.1. Пусть случайный процесс =tU, t[0,1], где UR[0,1] – случайная величина, равномерно распределенная на отрезке [0,1]. Описать множество сечений и реализаций случайного процесса (t).

Решение. При фиксированном t0 сечение t()=t0U() является случайной величиной, имеющей равномерное распределение на отрезке [0,t0].

Реализации случайного процесса (t), то есть неслучайные функции 0(t)=U(0)t, являются прямыми линиями, выходящими из начала координат со случайным угловым коэффициентом, равным U(0).
Рассмотрим сечение (t1) случайного процесса (t) в момент времени t1.

Функцию

F(x1,t1)=P{(t1)<x1}

называют одномерной функцией распределения случайного процесса в момент времени t1.

Если зафиксировать два значения моментов времени t1 и t2, то функция

F(x1,t1;x2,t2)=P{(t1)<x1,(t2)<x2}

называется двумерной функцией распределения случайного процесса.

Для n сечений случайного процесса функция

F(x1,t1;…;xn,tn)=P{(t1)<x1,….,(tn)<xn} (1.1)

называется n-мерной функцией распределения случайного процесса.

Будем считать, что случайный процесс (t) задан, если задано семейство функций распределений (1.1) для n.

Функция F(x1,t1;…;xn,tn) должна удовлетворять очевидным соотношениям, которые называются условиями согласованности:

, (1.2)

, (1.3)

где i1, i2,…,in – любая перестановка индексов 1,2,…n для n. Теперь можно сформулировать ещё одно определение случайного процесса.

Определение. Случайным процессом (t), заданным на множестве называется семейство распределений (1.1), удовлетворяющих условиям согласованности (1.2) и (1.3).

Набор функций F(x1,t1;…;xn,tn) для = 1,2,… называют конечномерным распределением случайного процесса (t).

Если функция F(x1,t1;…;xn,tn) допускает представление

,

где p(x1,t1;…;xn,tn) – некоторая измеримая неотрицательная функция такая, что

,

то p(x1,t1;…;xn,tn) называется n-мерной плотностью распределения случайного процесса (t).

При этом условия согласованности примут вид

,

.

Рассмотрим примеры на нахождение конечномерных функций распределения.

Пример 1.2. Пусть случайный процесс (t)=(t)V, t[0,1], где V – некоторая случайная величина, с функцией распределения FV(x), а (t)>0. Найти многомерную функцию распределения случайного процесса (t).

Решение. В соответствии с определением



.

Если функция распределения FV(x) имеет плотность pV(x), то существует и одномерная плотность случайного процесса (t). Так как для n=1 имеем

,

То .

Пример 1.3. Пусть случайный процесс, определяется соотношением (t)=Ut+V, где U и V–независимые случайные величины с функциями распределения FU(x), FV(y). Определить вид реализаций данного процесса и найти закон распределения.

Решение. Реализации этого случайного процесса представляют собой прямые линии со случайным наклоном и случайным начальным значением при t=0.

Одномерная функция распределения случайного процесса (t) при t>0 имеет вид



.

Если же t=0, то F(x,t)=FV(x).

Для n-мерной функции распределения, аналогично предыдущему примеру, получаем вид

.
^ Характеристическая функция конечномерного распределения вероятностей случайного процесса определяется также как для многомерных случайных величин





При решении многих задач приходится иметь дело с несколькими случайными процессами. Для задания, например, двух случайных процессов (t) и (t) определяется (n+m) - мерная функция распределения:





Эта функция распределения в общем случае не обладает свойством симметрии относительно всех перестановок аргументов.

Пример 1.4. Пусть случайный процесс (t)=(t)V, t[0,1], где V- гауссовская случайная величина с параметрами a и 2, (t) неслучайная функция. Найти характеристическую функцию случайного процесса (t).

Решение. Пусть, тогда в силу (tk)=(tk)V, получаем , поэтому  – гауссовская случайная величина с математическим ожиданием и дисперсией:

.

Учитывая, что для случайной величины  характеристическая функция имеет вид

,

получаем выражение для характеристической функции (t):

.

Задачи для самостоятельного решения

  1. Пусть случайный процесс X(,t) задан на вероятностном пространстве ,F,P, где: =1,2, F – множество всех подмножеств множества , P приписывает вероятности, равные 1/2, множествам {1} и {2}. Пусть множество значений параметра t есть отрезок [0,1] и X(,t)=t. Найти реализации случайного процесса X(,t) и его семейство конечномерных распределений.

  2. Пусть случайный процесс X(,t) определен на вероятностном пространстве ,F,P, где =0,1, – мера Лебега. Пусть t(0,1) и X(,t)=1 при t, X(,t)=0 при t>. Найти реализации случайного процесса X(,t) и его семейство конечномерных распределений.

  3. Пусть U – случайная величина, заданная функцией распределения FU(x), t>0. Найти семейство конечномерных распределений случайного процесса (t)=U+t.

  4. Пусть X и Y – случайные величины такие, что Y имеет симметричное относительно нуля распределение, P(Y=0)=0. Найти вероятность того, что реализации случайного процесса (t)=X+t(Y+t) при t 0 возрастают.

  5. Случайный процесс представляет собой (t)=V, где V – непрерывная случайная величина с плотностью pv(x). Найти одномерную и двумерную плотности распределения процесса.

  6. Поток покупателей является простейшим Пуассоновским с параметром , это значит, что вероятность того, что за время  появится ровно k покупателей, определяется формулой Пуассона

,

Процесс (t) представляет собой число покупателей пришедших от 0 до t (например, совпадает с началом рабочего дня). Найти одномерный закон распределения этого процесса.

  1. Случайный процесс задан соотношением (t)=X+t, t>0,где X – случайная величина с непрерывной функцией распределения, а >0 –детерминированная постоянная. Пусть D[0,) – некоторое конечное или счетное подмножество. Найти вероятности событий:

а) P{(t)=0 хотя бы для одного tD};

б) P{(t)=0 хотя бы для одного t[0,1]}.

  1. Случайный процесс задан в виде (t)=Vt2, где V – непрерывная случайная величина, распределенная по нормальному закону с параметрами a и 2. Найти многомерную плотность распределения случайного процесса (t).

  2. Случайный процесс (t) представляет собой аддитивную смесь некоррелированных между собой сигнала s(t) и помехи n(t). Известно, что сигнал есть детерминированная функция s(t)=Acos(Bt+), а помеха n(t) – гауссовский белый шум с диспресией 2. Записать одномерный закон распределения этого процесса.



  1   2   3   4   5   6   7   8   9   ...   24

Добавить документ в свой блог или на сайт

Похожие:

Элементы теории случайных процессов iconЯковлев С. А. Моделирование систем. М.: Высшая школа, 1999. 11 Марков...
Определить алгоритм формирования случайных чисел X, плотность распределения вероятностей которых имеет следующий вид

Элементы теории случайных процессов iconМоделирование (разыгрывание) случайных величин методом монте-карло
С. Улам опубликовали статью «Метод Монте-Карло», в которой систематически его изложили. Название метода связано с названием города...

Элементы теории случайных процессов iconХ(t) представляет собой функцию, которая отличается тем, что принимаемые...
Примеры выборочных функций модельного случайного процесса X(t) приведены на рис. 17 В дальнейшем без дополнительных пояснений при...

Элементы теории случайных процессов iconА. В. Погодин элементы теории правореализации
Теоретико-методологические основания исследования правореализации

Элементы теории случайных процессов iconЭлементы и их соединения
Элементы входят во второй и третий малые периоды, а также в четвертый — шестой большие периоды. У элементов iiiа-группы появляется...

Элементы теории случайных процессов iconТеории государства и права
Понятие, основные признаки, основные элементы и виды административно-правовых отношений

Элементы теории случайных процессов iconВопросы к экзамену
Элементы теории множеств. Бесконечные множества. Счетные множества. Несчетные множества. Действительные числа

Элементы теории случайных процессов iconКонспект лекций по дисциплине «Основы теории транспортных процессов»
«Организация дорожного процесса», 100403 – «Организация перевозок и управление транспортом»

Элементы теории случайных процессов iconПредмет экономической теории (ЭТ). Основные категории эт
Общая экономическая теория раскрывает сущность, содержание и закономерности развития экономических процессов в обществе в целом,...

Элементы теории случайных процессов icon2. Элементы теории сигналов. Подразделение передаваемых сигналов...
Применительно к задачам: Образцовые-сигнал с априорно известными хар-ми,обр-ся с пом-ью образцовых мер,цап,ацп

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов