1. Основные химические реакции процесса горения. Теплота сгорания




Название1. Основные химические реакции процесса горения. Теплота сгорания
страница13/13
Дата публикации26.08.2013
Размер1.45 Mb.
ТипДокументы
zadocs.ru > Математика > Документы
1   ...   5   6   7   8   9   10   11   12   13

19. Расчет параметров ударной волны при взрыве газовоздушной смеси. Взрыв в режиме детонации. Очаг поражения.
Взрыв газовоздушной смеси в атмосфере. Взрывы смесей горючих газов и паров легковоспламеняющихся жидкостей с воздухом на химических и нефтеперерабатывающих предприятиях, а также в быту часто являются причиной гибели людей, разрушения зданий и производственных объектов.

Облако газо- и паровоздушной смеси (ниже для краткости – газовоздушная смесь – ГВС) может образоваться при разгерметизации емкостей для хранения сжатых или сжиженных горючих газов, при разрывах газо-, нефте-, продуктопроводов, а также в результате испарения разлитых по поверхности легковоспламеняющихся жидкостей. Образование ГВС может происходить в открытой атмосфере, около технологических установок, в помещениях. При наличии источника зажигания определенной энергии происходит воспламенение и взрыв ГВС, который может протекать в режиме дефлаграции (наиболее часто) или детонации.

Важной особенностью газовоздушных смесей является наличие концентрационных пределов воспламенения, т. е. интервала концентрации горючего вещества от нижнего – НКПВ («бедного») до верхнего – ВКПВ («богатого»), в котором возможно самостоятельное распространение пламени от источника зажигания. Для большинства типичных углеводородовоздушных смесей значения этих пределов составляют 55 % (НКПВ) и 330 % (ВКПВ) от стехиометрической концентрации горючего вещества в смеси. Исключение из наиболее часто встречающихся газов составляют водород, ацетилен, аммиак, сероуглерод.

Стехиометрической называется оптимальная по составу смесь, в которой количество всех компонентов (горючего вещества и воздуха) полностью соответствует реакции взрывного превращения. Стехиометрическому соотношению компонентов смеси соответствуют наиболее высокие параметры взрыва. Недостаток воздуха («богатая» смесь) ведет к неполному сгоранию горючего вещества; избыток воздуха («бедная» смесь), не участвуя в реакции горения, лишь нагревается за счет взрыва, уменьшая тем самым энергию, идущую на ударную волну.

При взрыве ГВС выделение энергии происходит в объеме десятки – сотни кубических метров, скорость продвижения фронта реакций взрывного горения меньше, а общее время взрыва больше, чем при взрыве конденсированных ВВ. Поэтому давление в ударной волне взрыва ГВС нарастает медленнее, а длительность фазы сжатия больше, чем при взрыве конденсированных ВВ. При взрыве ГВС на образование воздушной ударной волны идет до 40 % энергии взрыва, остальная доля энергии расходуется на нагревание воздуха и продуктов реакции.

Данные по энергии ударной волны позволяют провести приближенное сравнение ее поражающего действия для взрывов ГВС и конденсированных ВВ, используя величину тротилового эквивалента по ударной волне. Предполагаем, что разрушения одинаковы при равных энергиях, идущих на образование ударных волн:

,

(1.21)

где 0,4 и 0,9 – доли энергии взрывов ГВС и конденсированных ВВ соответственно, расходующихся на образование ВУВ; – массы горючего вещества в облаке ГВС и тротила; – удельные теплоты сгорания горючего вещества и взрыва тротила; – доля горючего вещества в облаке ГВС, участвующей во взрыве: для открытого пространства принимают , для помещений .

Тогда тротиловый эквивалент взрыва ГВС по ударной волне:

.

(1.22)

При оценке поражающего действия ВУВ взрыва ГВС с помощью - диаграмм расчет избыточного давления и импульса фазы сжатия производят по формулам, полученным на основе данных экспериментов и аварийных взрывов.

Режим взрывного превращения (дефлаграция или детонация) зависит от характеристики окружающего пространства, свойств горючего вещества и определяется с помощью экспертной таблицы.

Только в загроможденных помещениях, когда образуются завихрения и струи горящей смеси, способствующие ее турбулизации, возможен переход горения некоторых веществ в режим детонации. В свободном пространстве взрыв ГВС протекает в режиме дефлаграции.

При определении параметров взрывной волны: избыточного давления и импульса фазы сжатия используется свойство подобия взрывов и расчет ведется через безразмерные параметры.

Безразмерные избыточное давление и импульс зависят от безразмерного расстояния и вычисляются по формулам:

в случае детонации:

при 0,224

;

(1.23а)




;

(1.23б)

при

; ;

(1.23в)

в случае дефлаграции:

при

;

(1.24 а)




;

(1.24 б)

при

; ,

(1.24 в)

где ; – расстояние от центра облака до объекта, м;  Па; – энергозапас облака ГВС, Дж (если облако ГВС лежит на земле, величина удваивается); – масса горючего вещества в облаке ГВС, кг (если величина неизвестна, ее определяют по объему облака, принимая концентрацию горючего вещества равной НКПВ); – удельная теплота сгорания горючего вещества, Дж/кг; – скорость фронта пламени, м/с.

Размерные избыточное давление в ВУВ и импульс фазы сжатия рассчитываются с помощью выражений:

, ,

(1.25)

где – избыточное давление в ВУВ, Па; – импульс фазы сжатия, Па·с.
^ 20. Поражающее действие ударной волны. Критерии поражения человека, промышленных и жилых зданий.
Повреждение объектов ударной волной. Попадая за фронт ВУВ, объект испытывает ударные силовые нагрузки, связанные в общем случае, во-первых, с избыточным давлением за фронтом волны, и, во-вторых, с движущимся за фронтом волны воздухом. Нагрузки – ударные, так как толщина фронта ВУВ около 10-7 м, а его скорость превышает скорость звука, и небольшой по линейным размерам объект при прохождении ВУВ оказывается за ее фронтом и начинает испытывать нагрузку практически мгновенно. Время, в течение которого действуют нагрузки, определяется длительностью фазы сжатия , зависящей от энергии взрыва и расстояния до него. По порядку величины – это сотые доли секунды.

Избыточное давление воздуха за фронтом ВУВ вызывает всестороннее обжатие объекта (действует как гидростатическое давление при погружении в воду).

Движущийся за фронтом ВУВ сжатый воздух при торможении его преградой оказывает на нее давление – давление скоростного напора (аналог ветровой нагрузки). Оно обусловливает метательное действие ударной волны – объект смещается (отбрасывается) ударной волной.

В общем случае основные параметры, характеризующие поражающее действие ударной волны – это избыточное давление во фронте (оно определяет и ) и импульс давления в фазе сжатия.

Воздействие ударной волны на конструкцию вызывает ее деформацию; разрушение происходит, если величина деформация превышает пороговое значение. При расчете деформации необходимо учитывать соотношение между длительностью фазы сжатия и периодом собственных колебаний конструкции . Выделяют три типа отклика (режима нагружения) конструкции на действие ударной волны: статический, импульсный и динамический.

1
) Статический тип отклика: (рис 1.17). В этом случае величина деформации определяется начальным перепадом давления во фронте волны и поражение пропорционально . Квазистатическое воздействие имеет место при .

2) Импульсный тип отклика: . В этом случае величина деформации нарастает в течение фазы сжатия и поражение пропорционально импульсу давления в фазе сжатия . На практике такое воздействие наблюдается при .

3) Динамический тип нагрузки – переходная область от статической к импульсной нагрузке: . Деформация зависит от обеих величин: избыточного давления во фронте волны и импульса .

Для различных взрывов длительность фазы сжатия разная, поэтому и типы нагружения одного и того же объект могут отличаться. Например, для элементов зданий типа стен импульсный характер воздействия будет при  с, а статический – при с; для оконных стекол: импульсный – при  с, а статический – при  с.

Совокупность параметров ударной волны избыточного давления и импульса , которые позволяют оценить поражение объекта, принято отображать на - диаграмме (диаграмма поражения) – рис. 1.18. Кривые на диаграмме – это линии равной степени поражения объекта (слабые, средние, сильные, полные разрушения). Если на объект действуют нагрузки (избыточное давление и импульс), отображаемые точкой, расположенной выше кривой, то объект будет поражен. Если точка, отображающая воздействие находится ниже кривой, объект не будет поражен.

При статическом режиме нагружения конструкции () поражение объекта происходит, если вне зависимости от импульса . Причем большей степени поражения соответствует большее значение критического избыточного давления: .

При импульсном режиме нагружения () поражение определяется импульсом давления, значение критического импульса соответствует степени поражения: .

Следует отметить, что такие диаграммы справедливы только для рассматриваемого объекта (или определенного типа похожих объектов) и данной степени повреждения.

Для сооружений, техники рассматриваются степени повреждения: полное разрушение, сильные, средние и слабые повреждения, характеристики которых приведены в приложении 2.

^ Поражение людей ударной волной. Поражение людей при взрыве происходит как за счет действия самой ударной волны – прямое действие, так и летящими обломками разрушенных зданий, оборудования, деревьев, осколками разбитых стекол, а также пылью, поднятой ударной волной – косвенное действие УВ (приложение 4).

Прямое действие ВУВ – действие избыточного давления и давления скоростного напора. Воздействие избыточного давления на человека воспринимается как удар по всей поверхности тела ( м2). При этом возможны повреждения внутренних органов, разрыв барабанных перепонок, кровеносных сосудов, сотрясение мозга, переломы и т. п. Действие давления скоростного напора – метательное действие УВ – удар по телу со стороны, обращенной к взрыву. В результате этого человек может быть отброшен на значительное расстояние и травмирован при ударе о различные препятствия и землю.

Поражения при прямом воздействии ВУВ делятся на легкие, средние, тяжелые и крайне тяжелые.

Легкие – при  кПа наблюдаются: легкая контузия, временная потеря слуха, ушибы, вывихи. Безопасным на открытой местности (прямое воздействие) считается избыточное давление  кПа, в помещениях – 5 кПа, что соответствует разрушению остекления и возможным травмам вследствие этого (косвенное воздействие).

Средние – при  кПа – травмы мозга с потерей сознания, повреждения органов слуха, кровотечения из носа и ушей, вывихи и переломы конечностей.

Тяжелые – при  кПа – сильная контузия, переломы конечностей, разрывы внутренних органов.

Крайне тяжелые – при  кПа – как правило, сопровождаются летальным исходом.

Косвенное воздействие ВУВ также может очень опасным. Например, при избыточном давлении 30 кПа массовая скорость воздуха за фронтом волны составляет около 60 м/с и двигающиеся с воздухом метеоры могут быть причиной травм, увечий и гибели людей. Данные по последствиям аварийных промышленных взрывов свидетельствуют о том, что поражение персонала и населения происходит, в основном, за счет косвенного воздействия ударной волны.
1   ...   5   6   7   8   9   10   11   12   13

Похожие:

1. Основные химические реакции процесса горения. Теплота сгорания iconОт чего зависит температура тела?
Удельная теплоёмкость. Теплота нагревания и охлаждения Удельная теплота сгорания топлива. Теплота сгорания топлива

1. Основные химические реакции процесса горения. Теплота сгорания iconОгонь играет громадную роль в жизни человека. Применение огня для...
Даже в наши дни значение огня и горения огромно. Работа многочисленных современных двигателей внутреннего сгорания, дизелей, паровых...

1. Основные химические реакции процесса горения. Теплота сгорания icon1 Химические реакции при сгорании топлива
Для полного сгорания массовой или объемной единицы топлива необходимо вполне определенное количество воздуха, которое называется...

1. Основные химические реакции процесса горения. Теплота сгорания iconЕтся комплекс мероприятий, направлен ных на ликвидацию возникшего...
Поскольку для возникновения и развития процесса горения, обусловливающего явления пожара, необходимо одновременное сочетание горючего...

1. Основные химические реакции процесса горения. Теплота сгорания iconЗадачи пожарной профилактики 4 2 Сущность процесса горения и развития...
Основные законодательные документы и нормативно-правовые акты в области пожарной безопасности 7

1. Основные химические реакции процесса горения. Теплота сгорания iconПродукция
Этот катализатор, встречающийся только в mpg-boost™, ускоряет реальную скорость, при которой топливо смешивается с воздухом в камере...

1. Основные химические реакции процесса горения. Теплота сгорания iconБилеты органическая химия
Химические свойства альдегидов(реакции восстановления, окисления, присоединения)

1. Основные химические реакции процесса горения. Теплота сгорания iconХимические свойства алифатических альдегидов
Реакции альдегидов и кетонов, приводящих к образованию новых углерод–углеродных связей

1. Основные химические реакции процесса горения. Теплота сгорания iconБензины предназначены для применения в поршневых двигателях внутреннего...
Несмотря на различия в условиях применения автомобильные и авиационные бензины характеризуются в основном общими показателями качества,...

1. Основные химические реакции процесса горения. Теплота сгорания iconТехнологии работы биокатализатора mpg отличаются от химической присадки....
Садки к топливу являются обычными детергентами, то есть простыми очистителями камеры сгорания. Катализатор mpg также мягко очищает...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
zadocs.ru
Главная страница

Разработка сайта — Веб студия Адаманов