Скачать 2.49 Mb.
|
^ Для определения степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки. Такие ошибки носят название случайных ошибок репрезентативности (т). Ошибки репрезентативности являются фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования, и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности. Оценка достоверности результатов исследования предусматривает определение:
^ Вычисление ошибок репрезентативности статистических величин производится следующим образом. ^ (mм) средней арифметической величины (М) производится по формуле: ![]() где σ — среднее квадратическое отклонение; п — численность выборки. Пример 9: в результате измерения веса 200 новорожденных получены следующие данные: средний вес новорожденного (М) составил 3300 г, среднее квадратическое отклонение (σ) - 310 г. Определить ошибку репрезентативности веса новорожденных. Ошибка репрезентативности составляет: ![]() Таким образом, средний вес новорожденных равен 3300 ± 21,9 г. ^ p>) относительной величины (Р) применяется формула: ![]() где ^ — соответствующая относительная величина (рассчитанная, например, в процентах, промилле и т. д.); q — величина, обратная Р, и выражена как (100 - Р%), (1000 - Р 0/00) и т. д.; п — численность выборки. Пример 10: Рассчитать ошибку репрезентативности показателя послеоперационной летальности в лечебной организации, если известно, что из 290 оперированных умерло 12 больных. Летальность составит: ![]() Ошибка репрезентативности показателя: ![]() Таким образом, послеоперационная летальности равна 4,1 ± 1,16%. ^ В клинических и экспериментальных работах довольно часто приходится использовать малую выборку, когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величин, число наблюдений уменьшается на единицу. Ошибка средней величины при малом числе наблюдений определяется по формуле: ![]() Ошибка относительного показателя при малом числе наблюдений определяется по формуле: ![]() Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Однако для получения достоверных показателей нельзя беспредельно увеличивать число наблюдений. К тому же, конкретные материалы нередко ограничены по численности изучаемой совокупности. Для оценки достоверности выборочного показателя (средней арифметической величины) принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку; в этом случае показатель (или средняя арифметическая величина) считается достоверной. Пример 11: средняя длительность лечения больных с язвенной болезнью желудка ^ 18,5 дней, среднее квадратическое отклонение σ = ±2,4 дня, численность выборки л = 64 человек. Ошибка средней арифметической величины т = ± 0,3. Средняя величина превышает свою утроенную ошибку. Следовательно, можно считать полученный результат достоверным.
Знание величины ошибки недостаточно для того, чтобы быть уверенным в результатах выборочного исследования, так как конкретная ошибка выборочного исследования может быть значительно больше (или меньше) величины средней ошибки репрезентативности. Для определения точности, с которой исследователь желает получить результат, в статистике используется такое понятие, как вероятность безошибочного прогноза, которая является характеристикой надежности результатов выборочных медико-биологических статистических исследований. Обычно при проведении медико-биологических исследований используют вероятность безошибочного прогноза 95% или 99%. В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы в теоретическом или практическом отношении, используют вероятность безошибочного прогноза 99,7% или 99,9%. Определенной степени вероятности безошибочного прогноза соответствует определенная величина предельной ошибки случайной выборки (А — дельта). Определяется эта величина по формуле: Δ = t х т, где t— доверительный коэффициент, соответствующий определенной степени вероятности безошибочного прогноза. Доверительный коэффициент имеет определенные значения: для большой выборки (л > 30) при вероятности безошибочного прогноза 95,5% t равен 2, при вероятности безошибочного прогноза 99% — 2,6 и при вероятности безошибочного прогноза 99,7% — 3,0, при вероятности безошибочного прогноза 99,9% — 3,3. Для малой выборки (л < 30) его значения определяются по специальной таблице значений / Стьюдента. Используя предельную ошибку выборки (Δ), можно определить доверительные границы, в которых с определенной вероятностью безошибочного прогноза заключено действительное значение статистической величины (средней или относительной), характеризующей всю генеральную совокупность. Другими словами, доверительные границы — это крайние значения возможных отклонений, в пределах которых может колебаться искомая величина (относительная или средняя) в генеральной совокупности. Для определения доверительных границ используются следующие формулы: ^ Мген = Мвыб. ± t х тм , где Мген — доверительные границы средней величины в генеральной совокупности; Мвыб.. — средняя величина, полученная при проведении исследования на выборочной совокупности; t — доверительный коэффициент, значение которого определяется степенью вероятности безошибочного прогноза, с которой исследователь желает получить результат; тм — ошибка репрезентативности средней величины. ^ ген = Pвыб ± t х тр, где Лен. — доверительные границы относительной величины в генеральной совокупности; Рвыб. — относительная величина, полученная при проведении исследования на выборочной совокупности; t — доверительный коэффициент, значение которого определяется степенью вероятности безошибочного прогноза, с которой исследователь желает получить результат; тр — ошибка репрезентативности относительной величины. Пример 12: при испытании нового лечебного препарата на группе больных 75 человек положительный эффект {Р) был отмечен у 82% пациентов (ошибка репрезентативности т = ± 3%). С вероятностью безошибочного прогноза 95,5% можно утверждать, что при применении этого препарата у всех больных положительный эффект наблюдался бы с частотой от 76 до 88% (Р±2т). Доверительные границы показывают также, в каких пределах может колебаться размер выборочного показателя в зависимости от причин случайного характера. В нашем примере мы можем полагать с достоверностью 95,5%. что при повторных исследованиях положительный эффект будет колебаться от 76 до 88%. При малом числе наблюдений (л < 30), для вычисления доверительных границ значение коэффициента t находят по специальной таблице Стьюдента (см. приложение 1). Значения t расположены в таблице на пересечении с избранной вероятностью безошибочного прогноза и строки, указывающей на имеющееся число степеней свободы (n'), которое равно n-1. Пример 13: при использовании нового метода лечения на группе больных (19 человек) получены следующие данные: средняя длительность лечения (M) составила 11 дней, средняя ошибка (т) = ± 1,5 дня.
Вывод: с достоверностью 95,5% можно утверждать, что при изучении генеральной совокупности величина средней длительности лечения будет колебаться в пределах 11 ± 2 х 2,1 дней, то есть от 6,8 до 15,2 дней.
При проведении медико-биологических исследований на двух сравниваемых совокупностях возникает необходимость определить не только их различие, но и его достоверность. Например, при сравнении результатов исследования в контрольной и экспериментальной группах, уровней летальности в двух больницах, показателей заболеваемости за два года и т. д. Метод оценки достоверности разности показателей или средних величин позволяет установить, существенны ли выявленные различия, или они являются результатом действия случайных причин. В основе метода лежит определение критерия достоверности (t), который рассчитывается по специальным формулам для средних и относительных величин. Формула расчета критерий достоверности (t) разности: для средних величин: ![]() для относительных величин: ![]() где M1 и М2, P1 и Р2 — статистические величины, полученные при проведении выборочных исследований; т1 и т2 — их ошибки репрезентативности; t — коэффициент достоверности. При изучении явления на большой выборке разность достоверна при t > 2, что соответствует вероятности безошибочного прогноза 95,5% (при n>30). При t > 3 различия между сравниваемыми величинами достоверны с вероятностью безошибочного прогноза 99,7%. В большинстве медицинских исследований достаточно иметь значение t, равное или более 1,96. Тогда выявленные различия достоверны, не случайны, статистически подтверждены с вероятностью безошибочного прогноза равной или более 95%. При величине коэффициента достоверности t < 1,96 степень вероятности безошибочного прогноза менее 95%. При такой степени вероятности безошибочного прогноза разность сравниваемых показателей недостоверна. В этом случае необходимо получить дополнительные данные, увеличив число наблюдений. Если после увеличения численности выборки, и, соответственно, уменьшения ошибки репрезентативности, различие продолжает оставаться недостоверным, можно считать доказанным, что между сравниваемыми совокупностями не обнаружено различий по изучаемому признаку. В качестве примера 14 сопоставим уровни общей летальности в двух больницах (табл. 8): ^
а) рассчитываем ![]() ![]() б) вычисляем критерий достоверности t: ![]() Рассчитанный критерий достоверности t равен 7,5, что указывает на достоверную разницу уровней летальности в сравниваемых больницах с вероятностью безошибочного прогноза более 99,9% (приложение 1). Для определения достоверности различий между двумя показателями или средними величинами при малом числе наблюдений (n < 30, в каждой группе) критерий достоверности оценивается по таблице значений критерия / Стьюдента по числу степеней свободы (n'). При этом число степеней свободы определяется, как сумма чисел наблюдений в каждой группе без двух (n' =n1 + n2 - 2). Метод оценки достоверности показателей и средних величин широко используется при проведении клинико-статистических исследованиях, при сравнительном анализе данных об эффективности различных методов диагностики и лечения. Он необходим при сравнении данных в динамике, по отделениям, участкам, контингентам больных и т. д. Применение этого метода целесообразно при оценке различий в уровнях заболеваемости, смертности, летальности, средней длительности лечения, частоты послеоперационных осложнений, эффективности диспансеризации и других интенсивных показателей и средних величин. Этот метод оценки достоверности не рекомендуется применять при анализе показателей распределения (экстенсивных показателей, показателей удельного веса), т.к. величина их зависит от соотношения составных частей внутри совокупностей и сделать вывод о наличии или отсутствии различий на основании экстенсивных показателей нельзя. Метод оценки достоверности по /-критерию (метод Стьюдента) применяют при сравнении двух величин. Если необходимо сравнить большее количество объектов, групп наблюдения, применяют другие методы.
Результаты статистического исследования могут быть представлены в виде графических изображений, что позволяет более наглядно продемонстрировать полученные результаты и облегчает проведение анализа. Существует несколько видов графических изображений, наиболее часто используют диаграммы (линейные, радиальные, столбиковые, ленточные, гистограммы, секторные и др.), картограммы, картодиаграммы (рис. 1-8) При построении графических изображений необходимо соблюдать следующие правила: - данные на графике должны размещаться слева направо и снизу вверх; - обязательное условие при построении графика - соблюдение масштабности; - нулевые точки шкал при наличии возможности должны быть изображены на диаграмме - цифры, показывающие деление шкал, помещаются слева или внизу соответствующей шкалы; - линии, представляющие диаграмму изображаемого явления, следует делать иного вида, нежели вспомогательные линии; - на кривой, отражающей динамику явления, необходимо отметить все точки, соответствующие отдельным наблюдениям; - в диаграммах, показывающих структуру, должна быть оттенена как линия нулевая, так и 100-процентная; - изображенные графические величины должны иметь цифровые обозначения на самом графике или в прилагаемой к нему таблице; - символы, используемые при построении диаграммы (цвет, штриховка, фигуры, знаки), должны быть пояснены; - каждый график должен иметь четкое, краткое название, отражающее его содержание; - название диаграммы должно размешаться под рисунком. ^ позволяют изображать динамику явления (изменение показателей во времени). Линейная диаграмма строится в системе прямоугольных координат, при ее построении следует учитывать соотношение между основанием и высотой - абсциссой х и ординатой у, основанное на принципе "золотого сечения": это соотношение должно быть 1,6:1. На горизонтальной оси (оси абсцисс) откладываются отрезки, обозначающие периоды времени. На вертикальной оси (оси ординат) откладываются размеры изучаемого явления. Обязательное условие при построении графика - масштабность. На одной диаграмме можно изобразить несколько линий, отличающихся друг от друга цветом, толщиной или формой пунктира (Рис.1). ^ аммы (диаграммы полярных координат, линейно-круговые диаграммы, векторные диаграммы) применяются для изображения сезонных (подекадных, помесячных, поквартальных) и других колебаний, имеющих замкнутый, циклический характер (за сутки, неделю и т.д.). Для их построения круг делится на столько секторов, на сколько частей разделен период времени, взятый для изучения явления (например, на 12 - при изучении помесячных колебаний в течение года; на 7 - при изучении явления за неделю). На каждом из радиусов с соблюдением масштабности отмечаются показатели, полученные точки соединяют прямыми линиями. Начало маркировки радиусов начинается с радиуса, соответствующего нулю градусов, и продолжается по часовой стрелке (Рис.2). Рис. 2 Сезонное распределение заболеваемости дизентерией в Ираке в 1997 году (1-12 - месяцы года) Столбиковые диаграммы строятся по такому же принципу, как и линейные, в системе координат, с соблюдением масштабности, но в которых вертикально или горизонтально проводимым линиям соответствуют прямоугольники. Эти диаграммы используются для изображения сравнительной величины явления в какой-либо определенный промежуток времени, например, сравнительной численности населения по странам мира; обеспеченности населения врачами в разные годы и т.д. (Рис.3). Гистограммы - в виде прямоугольников, треугольников, фигур позволяют изобразить однородные статистические показатели, не связанные друг с другом. Эти диаграммы используются для графического изображения статистических величин, характеризующих статику явления в разных совокупностях. Они также строятся в системе прямоугольных координат с соблюдением масштабности. Например, гистограммы применяются для графического изображения уровней смертности в разных возрастных группах населения; для демонстрации показателей больничной летальности в различных стационарах города; для изображения распространенности туберкулеза в различных социально-бытовых группах населения и т.д. (Рис.4). Секторные диаграммы используются для демонстрации структуры изучаемого явления, изображения части явления в целом. Они представляют собой круг, принимаемый за целое (100%), в котором отдельные секторы соответствуют частям изображаемого явления. Этот вид диаграмм применяется для графического изображения экстенсивных показателей. В секторных диаграммах секторы, изображающие отдельные части изучаемого явления, располагаются в порядке возрастания или убывания по движению часовой стрелки и имеют разный цвет или штриховку (Рис.5). Внутристолбиковые диаграммы также могут применяться для изображения структуры явления. При этом высота столбика принимается за 100%, весь столбик делится на составные части, которые соответствуют долям явления в процентах (Рис.6). Картограммы - это графические изображения, нанесенные на схемы географической карты, на которой различным цветом или штриховкой изображены степени распространенности явления по территории (Рис.7). Картодиаграммы - такие графические изображения, при построении которых на карту или схему карты изучаемой территории проставляются диаграммы (столбиковые, фигурные, линейные) (Рис.8).
При изучении динамики какого-либо явления прибегают к построению динамического ряда. ^ - это ряд однородных статистических величин, показывающих изменение какого-либо явления во времени и расположенных в хронологическом порядке через определенные промежутки времени. Числа, составляющие динамический ряд, называются уровнями. Уровень ряда - размер (величина) того или иного явления, достигнутый в определенный период или к определенному моменту времени. Уровни ряда могут быть представлены абсолютными, относительными или средними величинами. Динамические ряды делятся на простые (состоящие из абсолютных величин) и сложные (состоящие из относительных или средних величин). Простые динамические ряды могут быть моментными и интервальными. Моментный динамический ряд состоит из величин, характеризующих явление на какой-то определенный момент (дату). Примером могут служить статистические сведения, обычно регистрируемые на начало или конец месяца, квартала, года (численность населения на начало года, число врачей, средних медицинских работников на конец года, число лечебных учреждений, коек на конец года и т.д.). Интервальный динамический ряд состоит из чисел, характеризующих явление за определенный промежуток времени (интервал) - за неделю, месяц, квартал, год и т. д. Примером такого ряда могут служить данные о числе родившихся, умерших за год, число инфекционных заболеваний за месяц и т. д. Особенностью интервального ряда является то, что его члены можно суммировать (при этом укрупняется интервал), или дробить. Например, имея данные о количестве заболевших дизентерией, зарегистрированных за каждые день, можно построить динамический ряд с интервалом в неделю, месяц, год. Динамические ряды могут подвергаться преобразованиям, целью которых является выявление особенностей изменения изучаемого процесса, а также достижение наглядности. Прежде всего ряд может быть охарактеризован самими величинами членов ряда, называемыми уровнями. Величина первого члена ряда носит название начального (исходного) уровня, величина последнего члена ряда - конечного уровня. Средняя величина из всех членов ряда называется средним уровнем. Абсолютный прирост (убыль) - величина разности между последующим и предыдущим уровнями; прирост выражается числами с положительным знаком, убыль - с отрицательным знаком. Значение прироста или убыли отражают изменения уровней динамического ряда за определенный промежуток времени. Темп роста (снижения) - показывает отношение каждого последующего уровня к предыдущему уровню и обычно выражается в процентах. Темп прироста (убыли) - отношение абсолютного прироста или убыли каждого последующего члена ряда к уровню предыдущего, выраженное в процентах. Темп прироста может быть вычислен также по формуле: Темп роста - 100% Абсолютное значение одного процента прироста (убыли) - получается от деления абсолютной величины прироста или убыли на показатель темпа прироста или убыли за тот же период. Для более наглядного выражения нарастания или убывания ряда можно преобразовать его путем вычисления показателей наглядности, показывающих отношение каждого члена ряда к одному из них, принятому за сто процентов. Примеры расчета показателей динамического ряда представлены в таблице 10. Таблица 10 Младенческая смертность в Индии в 1992-1995гг. (на 1000)
Иногда динамика изучаемого явления представлена не в виде непрерывно меняющегося уровня, а отдельными скачкообразными изменениями. В этом случае для выявления основной тенденции в развитии изучаемого явления прибегают к выравниванию динамического ряда. При этом могут быть использованы следующие приемы: укрупнение интервала, вычисление групповой средней, вычисление скользящей средней, выравнивание методом наименьших квадратов. Укрупнение интервала производят путем суммирования данных за ряд смежных периодов. В результате получаются итоги за более продолжительные промежутки времени. Этим сглаживаются случайные колебания и более четко определяется характер динамики явления. ^ заключается в определении средней величины каждого укрупненного периода. Для этого необходимо суммировать смежные уровни соседних периодов, а затем сумму разделить на число слагаемых. Этим достигается большая ясность изменений во времени. ^ в некоторой степени устраняет влияние случайных колебаний на уровни динамического ряда и более заметно отражает тенденцию явления. При ее вычислении каждый уровень ряда заменяется на среднюю величину из данного уровня и двух соседних с ним. Чаще всего суммируются последовательно три члена ряда, но можно брать и больше Пример выравнивания динамического ряда данных о заболеваемости дизентерией по месяцам года представлен в таблице 11. Таблица 11. Число заболеваний дизентерией по месяцам года
Увеличивая в данном динамическом ряду интервал до 3 месяцев получаем число заболевших за квартал (графа 3, табл.11). Полученные данные указывают на постепенное возрастание числа заболевших дизентерией и его максимум в 3 квартале, после чего заболеваемость снижается. Разделив каждую полученную сумму на 3 (число месяцев в квартале), получаем средние величины по группам, отражающие ту же закономерность (графа 4. табл.11). Скользящая средняя обычно вычисляется как средня арифметическая из 3 смежных уровней (данного, предыдущего и последующего). Для первого и последнего уровней скользящая средняя не рассчитывается (графа 5, табл.11). Для 2-го уровня: ![]() ![]() Метод наименьших квадратов - один из наиболее точных способов выравнивания динамического ряда. Этот метод преследует цель устранить влияние временно действующих причин, случайных факторов и выявить основную тенденцию в динамике явления, вызванную воздействием только длительно действующих факторов. Выравнивание производится по линии, наиболее соответствующей характеру динамики изучаемого явления, при наличии основной тенденции к росту или снижению частоты явления. Такой линией является обычно прямая, которая наиболее точно характеризует основное направление изменений. Этот метод позволяет дать количественную оценку выявленной тенденции и на этой основе рассчитать прогнозируемые уровни на следующий год.
Группировка - расчленение совокупности изучаемых данных на однородные, типичные группы по наиболее существенным признакам. Группировка может проводиться по качественным и количественным признакам. Выбор группировочного признака зависит от характера изучаемой совокупности и задач исследования. Типологическая группировка производится по качественным (описательным, атрибутивным) признакам, например, по полу, профессии, группам болезни, тяжести течения болезни, послеоперационным осложнениям и т. д. Группировка по количественным (вариационным) признакам проводится на основании числовых размеров признака, например, по возрасту, длительности заболевания, продолжительности лечения и т.д. Количественная группировка требует решения вопроса о величине группировочного интервала: интервал может быть равным, а в ряде случаев - неравный, даже включать так называемые открытые группы. Например, при группировке по возрасту могут быть определены открытые группы: до 1 года. 50 лет и старше. При определении числа групп исходят из цели и задач исследования. Необходимо, чтобы группировки могли вскрыть закономерности изучаемого явления. Большое число групп может привести к чрезмерному дроблению материала, ненужной детализации. Малое число групп приводит к затушевыванию характерных черт. Закончив группировку материала, приступают к сводке. Сводка - обобщение единичных случаев, полученных в результате статистического исследования, в определенные группы, их подсчет и внесение в макеты таблиц. Сводку статистического материала проводят при помощи статистических таблиц. Таблица, не заполненная цифрами, называется макетом. В исследованиях, имеющих небольшой объем наблюдений, сводка проводится вручную. Все учетные документы раскладываются на группы в соответствии с шифром признака. Далее проводится подсчет и запись данных в соответствующую клетку таблицы. В настоящее время в проведении сортировки и сводки материала широко используются ЭВМ, которые позволяют не только отсортировать материал по изучаемым признакам, но выполнить расчеты показателей. |
![]() | Общественное здоровье и з/о (озз) область медицины, изучающая влияние социальных факторов на состояние здоровья населения. Это теоретическая... | ![]() | Общественное здоровье и здравоохранение как наука и область практической деятельности. Основные задачи. Объект, предмет изучения.... |
![]() | Очерк теории роста человечества демографическая революция и информационное общество | ![]() | Седона-метод: Избавьтесь от эмоциональных проблем и живите так, как всегда мечтали. 1 |
![]() | Седона-метод: Избавьтесь от эмоциональных проблем и живите так, как всегда мечтали. 1 | ![]() | Седона-метод: Избавьтесь от эмоциональных проблем и живите так, как всегда мечтали. 1 |
![]() | ![]() | ... | |
![]() | Дальнего Востока к решению актуальных проблем социального развития общества, формирования у молодежи активной гражданской позиции,... | ![]() | Целью дипломной работы является исследование способов и видов защиты на стадии предварительного расследования, проблем защиты при... |